Modelling of atmospheric electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn

Resumen   Abstract   Índice   Conclusiones


Pérez Invernón, Francisco Javier

2019-A
Descargar PDF  



Resumen

Resumen de la tesis de Dr. Francisco Javier Pérez Invernón:
Título: Modeling of atmospheric electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn.

En esta tesis doctoral se describen el desarrollo y los resultados de varios modelos para el estudio de fenómenos eléctricos en las atmósferas de Venus, la Tierra, Júpiter y Saturno. En el contexto del futuro lanzamiento de ASIM (ESA) en 2018 y TARANIS (CNES) en 2019, presentamos dos métodos para el análisis de la señal óptica emitida por fenómenos luminosos transitorios o “Transient Luminous Events (TLEs)” y detectada por fotómetros situados en el espacio. Estos fenómenos transitorios se producen en la alta atmósfera terrestre como consecuencia de la actividad eléctrica en la troposfera [1].
Se han desarrollado dos modelos electrodinámicos para simular el comienzo y la evolución de halos y elves (dos de los más frecuentes tipos de TLEs) en atmósferas planetarias. Estos modelos han sido acoplados con diferentes conjuntos de reacciones químicas para describir TLEs en las capas altas de las atmósferas de Venus [3, 4], la Tierra [2], Júpiter y Saturno [4]. Las versiones terrestres de estos modelos nos han permitido cuantificar el impacto químico local de halos y elves en la atmósfera de la Tierra. Hemos utilizado estos resultados junto a la tasa de ocurrencia global de TLEs observada por ISUAL (NSPO) para estimar el impacto químico global de estos eventos en la atmósfera terrestre. Además, hemos investigado las similitudes y diferencias entre los elves producidos por diferentes tipos de descargas eléctricas troposféricas, como los rayos nube-suelo o las impulsivas descargas eléctricas que se producen entre nubes. Finalmente, se ha utilizado el modelo de halos para calcular el campo cuasiestático producido por este tipo de TLE a nivel del suelo [2]. Hemos comparado este resultado con algunas medidas de campo eléctrico producido en tormentas con actividad eléctrica [2].
La existencia de rayos en Venus es todavía una incógnita. Hemos investigado la posibilidad de detectar TLEs venusianos como una evidencia indirecta de la existencia de rayos en ese planeta [3, 4]. Las versiones venusianas de los modelos de TLEs han sido útiles para predecir la posible existencia de halos y elves en Venus. De acuerdo a nuestros resultados, estos TLEs venusianos emitirían luz en un amplio rango de frecuencias del espectro óptico. Algunas de esas emisiones ópticas se producirían en la línea de 557 nm. La nave Akatsuki (JAXA), que actualmente orbita Venus desde el mes de diciembre de 2015, podría detectar destellos de luz en esa línea espectral.
En el caso de Júpiter y Saturno, la versión tridimensional del modelo de elves nos ha permitido predecir la forma e intensidad de las emisiones ópticas que se producirían en la alta atmósfera de esos planetas gigantes dependiendo de la latitud, la inclinación del canal del rayo y la composición de la alta atmósfera [4]. Además, hemos determinados que los destellos de luz detectados por naves espaciales como las Voyager (NASA) y Cassini (NASA, ESA y ASI) son probablemente producidos por rayos en lugar de por elves. Sin embargo, la aparición de TLEs en las atmósferas de Saturno y Júpiter es posible según nuestros modelos. Estos resultados podrían servir para revelar estos nuevos TLEs en coordinación con futuros instrumentos dedicados a buscar estos fenómenos.
Por otra parte, hemos usado un método de propagación de ondas “Full Wave Method (FWM)” para investigar la propagación de ondas de muy baja frecuencia “Very Low Frequency (VLF)” a través de atmósferas planetarias. En el caso de la Tierra, hemos calculado la función de transferencia de la guía de ondas curvada formada por la Tierra y la ionosfera [5]. Dicha función de transferencia es útil para analizar los pulsos electromagnéticos emitidos por fuentes lejanas. También hemos particularizado este modelo para el caso de la propagación de ondas “whistler” (de silbido) a través de la ionosfera de Venus [6]. Hemos comparado los resultados calculados con las señales obtenidas Pioneer Venus Orbiter (PVO) de NASA y Venus Express(VEX) de ESA, deduciendo tanto la ocurrencia global de rayos en Venus como la energía media por descarga necesarias para producir las detecciones obtenidas por las citadas naves.
Finalmente, hemos utilizado las emisiones ópticas simuladas con los modelos de halos y elves para desarrollar dos métodos que nos permitan analizar las señales ópticas reales de TLEs obtenidas por fotómetros desde el espacio. Estos métodos pueden ser utilizados para obtener la evolución temporal del número de fotones emitidos por elves y para deducir el campo eléctrico reducido en el interior de halos y elves. Hemos aplicado uno de estos métodos a señales de elves obtenidas por GLIMS (JAXA).

Referencias:
[1]: Pasko, Victor P., Yoav Yair, and Cheng-Ling Kuo. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects. Space science reviews 168.1-4 (2012): 475-516. https://doi.org/10.1007/s11214-011-9813-9 [2]: Pérez-Invernón, F. J., F. J. Gordillo-Vázquez, and A. Luque (2016), On the electrostatic field created at ground level by a halo, Geophys. Res. Lett., 43, 7215–7222, doi:10.1002/2016GL069590.
[3]: Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2016), Mesospheric optical signatures of possible lightning on Venus, J. Geophys. Res. Space Physics, 121, 7026–7048, doi:10.1002/2016JA022886.
[4]: Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2017), Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn, J. Geophys. Res. Space Physics, 122, 7636–7653, doi:10.1002/2017JA023989.
[5]: Mezentsev, A., Lehtinen, N., Østgaard, N., Pérez-Invernón, F. J., & Cummer, S. A. (2018). Spectral characteristics of VLF sferics associated with RHESSI TGFs. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027624.
[6]: Pérez-Invernón, F. J., Lehtinen, N. G., Gordillo-Vázquez, F. J., & Luque, A. (2017), Whistler wave propagation through the ionosphere of Venus. Journal of Geophysics and Engineering Space Physics, 122, 11,633–11, 644. https://doi.org/10.1002/2017JA024504



Abstract

Abstract of the PhD thesis of Dr. Francisco Javier Pérez Invernón:
PhD thesis title: Modeling of atmospheric electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn.

In this doctoral of thesis we describe the development and results of several models to study electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn. In addition, in the context of the future launch of ASIM (ESA) in 2018 and TARANIS (CNES) in 2019, we present two methods to analyze the optical signals emitted by Transient Luminous Events (TLEs) from space-based photometers.
We have developed two electrodynamical models to simulate the inception and evolution of halos and elves in planetary atmospheres, two of the most common types of TLEs, produced in the upper atmosphere of Earth [1] as a consequence of the lightning activity in the troposphere. These models have been coupled with different sets of chemical reactions to describe TLEs in the upper atmospheres of Venus [3, 4], the Earth [2], Jupiter [4] and Saturn [4].
The terrestrial versions of these models have allowed us to quantify the local chemical impact of halos and elves in the atmosphere of the Earth. We have used these results together with the TLE occurrence rate reported by ISUAL (NSPO) to estimate the global impact of these events in the chemistry of the terrestrial mesosphere. We have also investigated the similarities and differences between elves triggered by different types of lightning discharges, such as cloud-to-ground (CG) discharges, Compact Intracloud Discharges (CIDs) and Energetic In-cloud Pulses (EIPs). Finally, the model of halos has been used to calculate the quasielectrostatic field produced by this type of TLE at ground level [2]. We have compared this result with measurements of electric fields from thunderstorms [2].
The existence of lightning in Venus is still unclear. We have investigated the possibility of detecting Venusian TLEs as an indirect evidence of the existence of Venusian lightning discharges [3, 4]. The Venusian versions of the TLE models have been useful to predict the possible inception of halos and elves in Venus. According to our results, these Venusian TLEs could emit light in a wide range of frequencies of the optical spectrum. Some of these produced optical emissions would be produced in the 557 nm line. The Akatsuki spacecraft (JAXA), currently orbiting Venus since December 2015, could detect bursts of light in this spectral line.
In the case of Jupiter and Saturn, the three-dimensional version of the elve model have enabled us to study the shape and intensity of the predicted optical emissions in the upper atmosphere of the giant gaseous planets depending on the latitude, lightning channel inclination and upper atmospheric composition [4]. In addition, we have concluded that the optical flashes in the Saturnian and Jovian atmosphere detected by several spacecraft such as the Voyagers (NASA) and Cassini (NASA, ESA and ASI) come from lightning rather than from elves. However, it is possible that TLEs in the giant planets are triggered by the lightning activity in the atmospheres of Saturn and Jupiter. The models developed in this thesis could help unveil such new optical transient events in coordination with future dedicated instruments to search for such phenomena.
We have used a Full Wave Method to investigate the propagation of Very Low Frequency (VLF) waves through planetary atmospheres. In the case of Earth, we have calculated the transfer function of the curved Earth-ionosphere waveguide [5]. This transfer function is useful to analyze distant sources of electromagnetic pulses.
This model has also been particularized to the case of whistler wave propagation through the Venusian atmosphere [6]. The comparison of our results with signals reported by the Pioneer Venus Orbiter (PVO) of NASA and Venus Express (VEX) of ESA has allowed us to derive the rate of occurrence and energy released by hypothetical Venusian lightning radiating electromagnetic waves.
Finally, we have used the simulated optical emissions of halos and elves to develop two methods to analyze the emitting source from hypothetical signals recorded by space-based photometers onboard the future space missions ASIM and TARANIS that will study atmospheric electricity in the Earth atmosphere. These methods can be used to obtain the temporal evolution of the number of photons emitted by elves and to deduce the reduced electric field in halos and elves. We have applied one of these methods to the signals reported by GLIMS (JAXA).

References:
[1]: Pasko, Victor P., Yoav Yair, and Cheng-Ling Kuo. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects. Space science reviews 168.1-4 (2012): 475-516. https://doi.org/10.1007/s11214-011-9813-9 [2]: Pérez-Invernón, F. J., F. J. Gordillo-Vázquez, and A. Luque (2016), On the electrostatic field created at ground level by a halo, Geophys. Res. Lett., 43, 7215–7222, doi:10.1002/2016GL069590.
[3]: Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2016), Mesospheric optical signatures of possible lightning on Venus, J. Geophys. Res. Space Physics, 121, 7026–7048, doi:10.1002/2016JA022886.
[4]: Pérez-Invernón, F. J., A. Luque, and F. J. Gordillo-Vázquez (2017), Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn, J. Geophys. Res. Space Physics, 122, 7636–7653, doi:10.1002/2017JA023989.
[5]: Mezentsev, A., Lehtinen, N., Østgaard, N., Pérez-Invernón, F. J., & Cummer, S. A. (2018). Spectral characteristics of VLF sferics associated with RHESSI TGFs. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027624.
[6]: Pérez-Invernón, F. J., Lehtinen, N. G., Gordillo-Vázquez, F. J., & Luque, A. (2017), Whistler wave propagation through the ionosphere of Venus. Journal of Geophysics and Engineering Space Physics, 122, 11,633–11, 644. https://doi.org/10.1002/2017JA024504



Índice

Index of the PhD thesis of Dr. Francisco Javier Pérez Invernón:
PhD thesis title: Modeling of atmospheric electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn.
1 Introduction . . . . . . . . . . 1
1.1 Lightning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transient Luminous Events . . . . . . . . . . . . . . . . . . . 10
1.2.1 Elves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Halos and sprites . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Blue jets . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Gigantic Jets . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Other TLEs . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Electrical phenomena in other planets . . . . . . . . . . . . . 17
1.3.1 Giant Gaseous Planets . . . . . . . . . . . . . . . . . . 19
1.3.2 Venus . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Other planets . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Electrodynamical models . . . . . . . . . . 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Model of halos . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Models of elves . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Two-dimensional model . . . . . . . . . . . . . . . . . 38
2.3.2 Three-dimensional model . . . . . . . . . . . . . . . . 44
3 Electrical phenomena in the atmosphere of the Earth . . . . . . . . . . 49
3.1 Transient Luminous Events: Halos and elves . . . . . . . . . . 49
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Electric breakdown in the mesosphere . . . . . . . . . 50
3.1.3 Description of models . . . . . . . . . . . . . . . . . . 58
3.1.3.1 Simulations of halos an elves . . . . . . . . . 58
3.1.4 Results and discussion . . . . . . . . . . . . . . . . . . 66
3.1.4.1 Electromagneticfields and conductivity in
the lower ionosphere . . . . . . . . . . . . . . 67
3.1.4.2 Chemical impact of halos and elves . . . . . 71
3.1.4.3 Optical signature of halos and elves . . . . . 80
3.1.4.4 Quasielectrostatic field created by a halo . . 90
3.2 Very Low Frequency wave propagation through the Earthionosphere
waveguide . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.2 Transfer function of the Earth-ionosphere waveguide . 98
4 Analysis of optical signals emitted by TLEs . . . . . . . . . . 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Methods for the analysis of light emissions from TLEs . . . . 112
4.2.1 Deduction of the reduced electric field . . . . . . . . . 112
4.2.2 Treatment of the signal emitted by an elve . . . . . . 115
4.2.2.1 Observed signal . . . . . . . . . . . . . . . . 115
4.2.2.2 Inversion of the signal . . . . . . . . . . . . . 121
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.1 Analysis of the signals obtained with the halo and elve models . . . . . . 126
4.3.1.1 Reduced electricfield in halos . . . . . . . . 126
4.3.1.2 Reduced electric field in elves . . . . . . . . . 131
4.3.1.3 Emitting source of elves . . . . . . . . . . . . 135
4.3.2 Analysis of signals recorded from space . . . . . . . . 139
4.3.2.1 Deduction of the source of an elve reported by GLIMS . . . . . 140
4.3.2.2 Remarks about the possibility of applying the inversion method to signals reported by other space missions . . . . . . . . . . . . . . 148

5 Signature of possible lightning from the Venusian atmosphere . . . . . . . . . . . . . 151
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 The atmosphere of Venus: Mesosphere and ionospheric plasma
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1 Electric breakdown in the nightside lower ionosphere
of Venus . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2.2 Model of a cloud discharge in the atmosphere of Venus 158
5.2.3 Plasma conditions in the ionosphere of Venus . . . . . 164
5.3 Optical signature of possible Venusian TLEs . . . . . . . . . . 172
5.3.1 Description of the models . . . . . . . . . . . . . . . . 172
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.2.1 Venusian Halos . . . . . . . . . . . . . . . . . 175
5.3.2.2 Venusian Elves . . . . . . . . . . . . . . . . . 184
5.3.2.3 Comparison with previous measurements . …. 191
5.3.2.4 Feasibility of detecting Venusian TLEs from present and future orbiters . . . . . . . . . . 193
5.4 Electromagnetical signatures of possible Venusian lightning:
Whistler waves . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.4.1 Particularization of the model for the atmosphere of Venus . . . . . . . .. . . . 195
5.4.2 Results: Characteristic of whistler waves traveling
through the Venusian ionosphere . . . . . . . . . . . . 201
5.4.2.1 Power spectral density based on the electric field . .. . . . . . . . . 202
5.4.2.2 Power spectral density of the magnetic field . . . . . . 206
5.4.2.3 Transfer function of the Venusian ionosphere . . . . . . 208
5.4.2.4 Remarks about the comparison between calculated
and reported signals . . . . . . . . . 210
6 Elves produced in Giant Gaseous Planets . . . . . . . . . 213
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.1.1 Model of TLEs in Jupiter and Saturn . . . . . . . . . 214
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.2.1 Reduced electric field and electron density in the lower ionosphere . . . . . . . . 220
6.2.2 Optical emissions . . . . . . . . . . . . . . . . . . . . . 223
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7 Summary . . . . . . . . . . 229
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8 Conclusions . . . . . . . . . . 233
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9 Future work . . . . . . . . . . 235
9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Appendix A Chemical schemes 237
A.1 Kinetic model for terrestrial TLEs . . . . . . . . . . . . . . . 237
A.2 Kinetic model for Venusian TLEs . . . . . . . . . . . . . . . . 250
References . . . . . . . . . . 255



Conclusiones

Conclusions of the PhD thesis of Dr. Francisco Javier Pérez Invernón:
PhD thesis title: Modeling of atmospheric electricity phenomena in the atmospheres of Venus, Earth, Jupiter and Saturn.

– Halos and elves can produce an important amount of NO and N2O in the upper mesosphere.
The optical spectra of elves do not depend on the type of parent lightning discharge.
Compact Intracloud Discharges (CID) and Energetic In-cloud Pulses (EIP) can produce elve “doublets”.
– The quasielectrostatic feld produced by halos at ground level is not detectable by current instruments.
– We have used the FWM to deduce a transformation from the transfer function of the flatted Earth-ionosphere waveguide (EIWG) to the curved EIWG. This transfer function has been used to investigate the pulses radiated from regions where Terrestrial Gamma-ray Flashes (TGFs) are produced.
– We have developed a method to obtain the reduced electric field inside halos and elves from space-based photometers. This method could be used to analyze future optical data reported by ASIM (ESA) and TARANIS (CNES).
– We have developed an inversion method to obtain the temporal evolution of the emitting source of an elve using optical signals reported by spacecraft.
– Hypothetical Venusian halos and elves could be an indirect probe of the existence of lightning discharges in Venus. They would emit light pulses in a wide range of frequencies. Emissions in the 557 nm line could enhance the natural intensity variation of the Venusian nightglow. In addition, they could be detected by the LAC instrument onboard the Akatsuki spacecraft (JAXA).
– We have particularized the FWM to the case of whistler wave propagation through the atmosphere of Venus. According to our results, the signals detected by PVO (NASA) and VEX (ESA) were probably produced by upper atmospheric plasma instabilities rather than by tropospheric lightning discharges.
– We have modeled Saturnian and Jovian elves. According to our results, the optical flashes so far detected by several spacecraft, such as the Voyagers (NASA) and Cassini (NASA, ESA and ASI), were produced by lightning discharges instead of by TLEs. However, according to our models, lightning in Saturn and Jupiter can be accompanied by TLEs.
The shape and intensity of the elves predicted by our models in the atmospheres of Saturn and Jupiter depend on the latitude, the parent lightning channel inclination and the composition of the upper atmosphere.