Aspectos térmicos y mecánicos de la geodinámica de la litosfera
Resumen Abstract Índice Conclusiones
Jiménez Díaz, Alberto
2016-A
Descargar PDF
ASPECTOS TÉRMICOS Y MECÁNICOS DE LA GEODINÁMICA DE LA LITOSFERA
El estudio de la estructura térmica y mecánica de la litosfera aporta información sobre el modo en que las capas externas y relativamente rígidas de los planetas, responden a las fuerzas a las que se encuentran sometidas. También proporciona información sobre la evolución térmica, y sobre los cambios en la dinámica global experimentados a lo largo de su evolución. Por otro lado, el estudio de las deformaciones registradas en sus superficies permite conocer como son los procesos de geodinámica interna y cuál ha sido su evolución a lo largo de su historia geológica (los campos de esfuerzos que dan lugar a las deformaciones tectónicas tienen su origen en los procesos geodinámicos internos, es decir, están generados en última instancia por los procesos que gobiernan la pérdida de calor interno). En este contexto, el objetivo principal de esta Tesis Doctoral es el estudio de diferentes aspectos de la estructura térmica y mecánica de la litosfera, con el fin de avanzar en el conocimiento y comprensión de la dinámica y evolución interna de la Tierra y de los planetas de tipo terrestre.
Este estudio se ha llevado a cabo para múltiples ambientes geodinámicos, desde unidades tectónicas intraplaca como el Sistema Central y la Cuenca del Tajo en el centro de la península ibérica, a áreas que engloban distintas placas litosféricas y litosferas de diferente naturaleza (continental u oceánica), como es Centroamérica; y para diferentes planetas de tipo terrestre, ejemplificados en esta Tesis Doctoral por Venus y Marte. Esta diversidad de contextos ha potenciado el aprendizaje y desarrollo de métodos de análisis específicos en función de los datos disponibles y de las características de las litosferas estudiadas, abriendo nuevas posibilidades en técnicas ya existentes. Estas aportaciones han permitido mejorar la caracterización el estado térmico y resistencia de la litosfera en diferentes ambientes tectónicos de la Tierra y en las litosferas de Venus y Marte, proporcionando una visión más amplia del concepto de litosfera.
Así, la investigación presentada en esta Tesis Doctoral pone de manifiesto, mediante el estudio de casos concretos y el empleo de diferentes metodologías, la profunda interrelación que existe entre la estructura mecánica de la litosfera y su estado térmico, y cómo cada aumento en el conocimiento de uno de estos aspectos puede ser utilizado para mejorar nuestro conocimiento del otro, de manera que no es posible una correcta comprensión de la primera sin un adecuado conocimiento del segundo y viceversa.
Tomados en conjunto, los trabajos incluidos en esta investigación muestran la universalidad de los métodos que sirven para estudiar la estructura térmica y mecánica de la litosfera, refuerzan la confianza en la aplicación de este tipo de metodologías al estudio de la litosfera en diferentes contextos geodinámicos, así como de diferentes cuerpos planetarios, y proporcionan una visión mucho más amplia del concepto de litosfera.
Como es habitual en cualquier investigación, la que se recoge en esta Tesis Doctoral no supone más que un primer paso para el estudio de la estructura térmica y mecánica de la litosfera, y para avanzar en el conocimiento y comprensión de la dinámica de la Tierra y del resto de los planetas terrestres, y de cómo se ha desarrollado su evolución interna. Cada uno de los trabajos aquí recopilados plantea preguntas que constituyen nuevos retos a afrontar, y que abren el camino a futuras investigaciones.
ABSTRACT
“THERMAL AND MECHANICAL ASPECTS OF THE GEODYNAMICS OF THE LITHOSPHERE”
Recent progress in geophysical and geochemical studies has brought us far in the understanding of the structure, origin, and evolution of the lithosphere. This intense research activity has allowed to the development of techniques to estimate temperature profiles or the strength of rocks in terms of depth (known as strength envelopes or rheological profiles), and of concepts such as the total strength of the lithosphere or the effective elastic thickness; to the joint analysis of the gravity and topography data to constrain fundamental aspects of the structure and long-term mechanical behaviour of the lithosphere; or to the use of mechanical indicators of the lithosphere to estimate its corresponding thermal properties, in order to constrain the thermal structure and evolution of a planetary body. Several of these concepts and techniques have also been used in research on other planetary bodies, reaching a significant level of refinement in the geodynamic analysis of their lithospheres. In this sense, the lithosphere of each planetary body has its own characteristics; however, the study methods are the same, although their application must be adapted to each case due to the quantity, nature and resolution of the available data. The terrestrial planets have a similar structure and composition than that of the Earth, and so it is not surprising that the same methods serve to study their lithospheres. In fact, the concepts applied to study, for example, Mercury, Venus, Mars or the Moon are the same as those used for the investigation of our own planet. In addition, a better understanding of these planetary bodies and their evolution leads to a better understanding of our own planet, since brings other models with which compare the Earth’s dynamics and evolution, while providing a framework to test the general validity of certain concepts or methods, and thus, can be the inspiration source for tackle some problems of terrestrial dynamics. The comparison of the results obtained for other planetary bodies with the current knowledge of the evolution of the Earth provides an overview of the terrestrial planets, and an improved knowledge of how variations in the specific conditions (such as composition, mass or capacity to retain and recycle volatile elements) correspond to different evolutionary paths, and hence to different expressions of their global dynamics, such as the existence or absence of plate tectonics, and the intensity of internal cooling or heating. In a similar way, the results of these investigations allow us to advance in our understanding of the interrelationship between the functioning of the internal geodynamics of each planet and the evolution of its environmental and climatic conditions.
In this context, the main aim of this Ph.D. Thesis is the analysis of the thermal structure and long-term mechanical behaviour of the lithosphere, in order to improve our knowledge and understanding of the dynamics and internal evolution of the Earth and other terrestrial planets. The methodological nature of the research presented here allows the study of different geodynamic contexts of the Earth and other terrestrial planets (exemplified in this thesis by Venus and Mars), encouraging the learning and development of specific methods of analysis for determining the thermal state and strength of the lithosphere in different contexts, and therefore providing a much broader view of the concept of lithosphere.
Thus, this study includes the following more specific objectives:
(i) Performing a detailed study of the thermal structure of the lithosphere, and its relation to the mechanical structure, in the Central Iberian Peninsula (Chapter 2).
(ii) To study the structure and long-term mechanical behaviour of the lithosphere by using the joint analysis of gravity and topography data, first for an area of the Earth, Central America and surrounding regions (Chapter 3), and then for Venus as a whole (Chapter 4).
(iii) To use the mechanical properties of the lithosphere to estimate their corresponding thermal properties, in order to constrain the thermal evolution of Mars (Chapter 5).
Chapter 2: The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy
Here it has been modelled the thermal structure of the lithosphere of the Spanish Central System and the Tajo Basin, and their implications for lithospheric strength. For this, refined heat-producing elements (HPE) values have been used to obtain new estimates of heat production rates in the Spanish Central System and Tajo Basin areas, which have been used joined to the relation between topography and thermal structure of the lithosphere to calculate the best-fit surface heat flows in the study area. Moreover, a temperature-dependent thermal conductivity (appropriate for olivine) for the lithospheric mantle has been implemented to improve the calculations of temperature profiles in the mantle. The geotherms so obtained, together with the implementation of a new rheological law for the upper lithospheric mantle, have been used to calculate refined estimations of the strength and effective elastic thickness of the lithosphere. It has been obtained surface heat flow values of 84 mW m-2 and 82 mW m-2 for the Spanish Central System and the Tajo Basin, respectively. The thermal state of the lithosphere affects mantle temperatures, and hence may be playing an important role in the uplift and maintenance of the Spanish Central System.
Chapter 3: Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions
As a proxy for long-term lithospheric strength, the effective elastic thickness (Te) can be used to understand the relationship between lithospheric rheology and geodynamic evolution of complex tectonic settings. Here it has been presented, for the first time, high-resolution maps of spatial variations of Te in Central America and surrounding regions from the analysis of the coherence between topography and Bouguer gravity anomaly using multitaper and wavelet methods. Regardless of the technical differences between the two methods, there is a good overall agreement in the spatial variations of Te recovered from both methods. Although absolute Te values can vary in both maps, the qualitative Te structure and location of the main Te gradients are very similar. The pattern of the Te variations in Central America and surrounding regions agrees well with the tectonic provinces in the region, and it is closely related to major tectonic boundaries, where the Middle American and Lesser Antilles subduction zones are characterized by a band of high Te on the downgoing slab seaward of the trenches. These high Te values are related to internal loads (and in the case of the southernmost tip of the Lesser Antilles subduction zone also associated with a large amount of sediments) and should be interpreted with caution. Finally, there is a relatively good correlation, despite some uncertainties, between surface heat flow and our Te results for the study area. These results suggest that although this area is geologically complex, the thermal state of the lithosphere has profound influence on its strength, such that Te is strongly governed by thermal structure.
Chapter 4: Lithospheric structure of Venus from gravity and topography
There are many fundamental and unanswered questions on the structure and evolution of the Venusian lithosphere, which are key issues for understanding Venus in the context of the terrestrial planets. Here the lithospheric structure of Venus has been investigated by calculating its crustal and effective elastic thicknesses (Tc and Te, respectively) from an analysis of gravity and topography, in order to improve our knowledge of the large scale and long-term mechanical behaviour of its lithosphere. We found that the Venusian crust is usually 20-25 km thick with thicker crust under the highlands. Our effective elastic thickness values range between 14 km (corresponding to the minimum resolvable Te value) and 94 km, but are dominated by low to moderate values. Te variations deduced from our model could represent regional variations in the cooling history of the lithosphere and/or mantle processes with limited surface manifestation. The crustal plateaus are near-isostatically compensated, consistent with a thin elastic lithosphere, showing a thickened crust beneath them, whereas the lowlands exhibit higher Te values, maybe indicating a cooler lithosphere than that when the Venusian highlands were emplaced. Meanwhile, the large volcanic rises show a complex signature, with a broad range of Te and subsurface-to-surface load ratio (F) values. Finally, our results also reveal a significant contribution of the upper mantle to the strength of the lithosphere in many regions.
Chapter 5: The thermal evolution of Mars as constrained by paleo-heat flows
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here it has been performed refined estimates of paleo-heat flow for 22 Martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.
Concluding remarks
This research shows, through the study of individual cases and by using of different methodologies, the close interrelation between the mechanical structure of the lithosphere and its thermal state, and how every increase in the knowledge of one of these aspects can be used to improve our knowledge of the other, such that it is not possible a correct understanding of the first without an adequate knowledge of the second and vice versa.
Taken together, the papers included in this research show the universality of the methods used to study the thermal and mechanical structure of the lithosphere, strengthen the confidence in the application of these methodologies to the study of the lithosphere for different geodynamic contexts, as well as for different planetary bodies, and provide a much broader view of the concept of lithosphere.
As usual in any research, this Ph.D. Thesis is no more than a first step in the study of the thermal and mechanical structure of the lithosphere, in the understanding of the dynamics of the Earth and other terrestrial planets, and in how it has developed its internal evolution. Each of the papers collected here raises questions that represent a great opportunity, as well as a great challenge, for future work.
Índice general
AgradecimientosIII
Índice generalIX
Índice de figurasXIII
Índice de tablasXIX
Abstract1
1. Introducción y objetivos5
1.1. Presentación7
1.2. Planteamiento y objetivos de la investigación7
1.3. Estructura de la memoria y contribuciones originales10
1.4. Enfoque integrado del estado térmico y mecánico de la litosfera13
2. Análisis de la estructura térmica y mecánica de la litosfera continental: Estado térmico y resistencia de la litosfera en el centro de la península ibérica15
2.1. Introducción17
2.2. The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy19
2.2.1. Introduction19
2.2.2. Temperature profiles21
2.2.3. Crustal heat production23
2.2.4. Strength of the lithosphere26
2.2.5. Results27
2.2.5.1. Thermal modeling27
2.2.5.2. Mechanical structure and strength envelopes29
2.2.6. Discussion and Conclusions32
3. Estimación del espesor elástico efectivo de la litosfera mediante métodos espectrales: Resistencia de la litosfera en Centroamérica y las regiones circundantes41
3.1. Introducción43
3.2. Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions45
3.2.1. Introduction45
3.2.2. Te estimation by spectral methods47
3.2.2.1. Multitaper method48
3.2.2.2. Wavelet method49
3.2.2.3. Regional topography, gravity and crustal structure49
3.2.3. Results51
3.2.3.1. Spatial variations of Te51
3.2.3.2. Comparison with previous Te estimates54
3.2.4. Discussion55
3.2.4.1. Te, surface heat flow and thermal age55
3.2.4.2. Loading of the lithosphere57
3.2.4.3. The Middle American and Lesser Antilles subduction zones60
3.2.4.4. Te and seismicity61
3.2.5. Conclusions62
3.3. Supplementary Material69
3.3.1. Bouguer coherence69
3.3.2. Multitaper method73
3.3.3. Wavelet method77
3.3.4. Bias in Te estimation82
4. Análisis integrado de la topografía y gravedad en el estudio de la estructura cortical y litosférica de los planetas terrestres: Estructura de la litosfera de Venus87
4.1. Introduction89
4.2. Lithospheric structure of Venus from gravity and topography91
4.2.1. Introduction91
4.2.2. Global gravity and topography of Venus93
4.2.3. Crustal thickness modeling95
4.2.4. Estimating the effective elastic thickness of the lithosphere98
4.2.5. Results of effective elastic thickness mapping99
4.2.6. Discussion102
4.2.7. Conclusions105
5. La (reconstrucción de la) historia térmica de los planetas terrestres: Estructura y evolución de la litosfera de Marte115
5.1. Introduction117
5.2. The thermal evolution of Mars as constrained by paleo-heat flows119
5.2.1. Introduction119
5.2.2. Strength of the lithosphere121
5.2.3. Temperature profiles125
5.2.4. Results128
5.2.5. Discussion131
5.2.6. Conclusions133
6. Discusión y conclusiones141
6.1. Marco conceptual integrador143
6.2. Sobre la anisotropía mecánica de la litosfera145
6.2.1. Te, anisotropía de Te y deformación litosférica149
6.2.2. Prospectiva150
6.3. Sobre la evolución interna (y climática) de Marte153
6.3.1. Espesor de corteza (Tc)153
6.3.2. Prospectiva156
6.4. Sobre la estimación del espesor elástico efectivo de la litosfera (Te) mediante métodos espectrales158
6.5. Conclusiones161
6.6. Reflexión final163
Bibliografía165
Anexo I. Jiménez-Díaz, A., Ruiz, J., Villaseca, C., Tejero, R., Capote, R. The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy. Journal of Geodynamics 58, 29-37, 2012.173
Anexo II. Jiménez-Díaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J.F., Álvarez-Gómez, J.A., Tejero, R., Capote, R. Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters 391, 55-66, 2014.185
Anexo III. Ruiz, J., McGovern, P.J., Jiménez-Díaz, A., López, V., Williams, J.-P., Hahn, B.C., Tejero, R. The thermal evolution of Mars as constrained by paleo-heat flows. Icarus 215, 508-517, 2011.199