Processes, time scales and unrest of monogenetic volcanism
Resumen Abstract Índice Conclusiones
Albert Mínguez, Helena
2016-A
Descargar PDF
Las erupciones volcánicas están generalmente precedidas por la actividad sísmica, la deformación y la desgasificación (unrest). El éxito en la predicción del evento volcánico depende de la calidad de la red de vigilancia para detectar cualquier cambio en el comportamiento del volcán. Para interpretar los precursores geoquímicos y geofísicos correctamente es importante entender los procesos volcánicos que ocurren antes y durante las erupciones volcánicas. El conocimiento en detalle de la estructura interna del volcán, la reología de los magmas, las escalas de tiempo de los procesos que ocurren en profundidad y las características de los episodios pasados de unrest, debe combinarse con una red de vigilancia adecuada para mejorar el pronóstico de los eventos volcánicos. Sin embargo, estos aspectos han recibido poca atención en los volcanes monogenéticos.
El objetivo de mi tesis doctoral es mejorar nuestra comprensión sobre el vulcanismo monogenético, sus causas y su dinámica, con el objetivo de mejorar la posibilidad de anticiparse a la actividad volcánica. Me he centrado en tres aspectos principales de este problema. El primero es el cálculo de las propiedades reológicas de los magmas durante los eventos de mezcla. El segundo aspecto es el estudio de los procesos, junto con sus escalas temporales, que llevan a erupciones monogenéticas con el fin de interpretar mejor la actividad volcánica y mejorar los pronósticos de una erupción. Por último, he investigado los períodos de unrest sísmico de erupciones monogenéticas históricas en todo el mundo mediante una compilación de documentos históricos. Los resultados proporcionan un marco conceptual que permite mejorar la predicción de erupciones monogenéticas y deberían conducir a mejores estrategias para mitigar sus peligros y riesgos asociados.
Seismic, deformation, and gas activity (unrest) typically precedes volcanic eruptions.
Successful volcanic event forecasting depends on the quality of the surveillance
network for detecting any changes in the volcano behaviour. To interpret
the geochemical and geophysical precursors correctly it is important to
understand the volcanic processes that occur prior and during volcanic eruptions.
Detailed knowledge of the volcano internal structure, the rheology of the magmas,
the time scales of the processes occurring at depth and the characteristics of
past unrest episodes, must be combined with an adequate monitoring network to
improve the volcanic hazard forecast. However, these aspects have received little
attention in monogenetic volcanoes. The aim of my PhD Thesis is to improve
our understanding on monogenetic volcanism, its causes and dynamics, and to
help anticipating the volcanic activity. I have focused on three main aspects of
this problem.
The first one is the calculation of the rheological properties of magmas during
mixing. I have analysed samples from the Monta˜na Reventada eruption (Tenerife,
Canary Islands). This is an example of magma mingling and mixing in
which the eruption was triggered by intrusion of basanitic magma into a phonolitic
reservoir. The phonolitic lava flow is characterized by the presence of mafic
enclaves. The morphology of each enclave is different, varying from rounded to
complex finger- like structures usually with cuspate terminations. I have quantified
the textural heterogeneity of the enclaves by applying fractal geometry methods
to obtain the viscosity ratio between the phonolitic magma and the enclaves.
These results enable me to infer the water content of the basanitic magma and the
enclaves (1.5–2 wt %).
The second aspect of monogenetic volcanism that I have addressed are the processes
and time scales that lead to monogenetic eruptions with the aim to better
interpret volcanic unrest and improve eruption forecasts. I have conducted a
geochemical and petrological study of the historical eruptions of Siete Fuentes,
Fasnia, and Arafo (Tenerife, Canary Islands). All the erupted magmas were basanitic.
I have identified four olivine compositional populations that are either
unzoned, normally or reversely zoned in major and minor elements. The variety
of olivine core populations and zoning patterns reflects mixing and mingling
between different magmas. Modelling of the zoning profiles of olivine shows
that early mixing occurred between two relatively evolved magmas, probably at
shallow depths one year prior to the eruption. Another mixing event between
two more primitive magmas stored presumably at deeper levels occurred less
than two months prior to the eruption. Finally, movement from depth of the
pre-mixed primitive melts and interaction with the also pre-mixed shallower and
more evolved melts occurred only two weeks before the eruption. The shorter
transport times of weeks are also seen in the compilation of the historical accounts
of seismicity associated with these eruptions.
The third aspect of monogenetic volcanism I have investigated are the seismic
unrest periods of historical monogenetic eruptions from a compilation of historical
accounts worldwide. Eruptions from monogenetic volcanoes are particularly
difficult to anticipate since they occur at unexpected locations (e.g. Paricutin,
1943) and there is very limited instrumental monitoring data. I have gathered the
available instrumental data of unrest episodes and combined it with new historical
accounts of seismicity. I find that there is a commonality in the seismic activity
preceding monogenetic eruptions, with clusters at around one or two years, two
or three months, and one or two weeks. The petrological and geochemical characteristics
of these eruptions show that multiple magma batches interacted in a
subvolcanic reservoir, and multiple intrusions occurred on similar time scales to
the seismicity. I propose a general model where early dike intrusions in the crust
do not erupt and create small plumbing systems (i.e. stalled intrusions). These
intrusions are probably instrumental in creating a thermal and rheological pathway
for later dikes to be able to reach the surface. These observations provide a
conceptual framework for better anticipating monogenetic eruptions and should
lead to improved strategies for mitigation of their associated hazards and risks.
Contents
List of Figures xiii
List of Tables xix
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 State of the Art 7
2.1 Monogenetic volcanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Monogenetic volcanism in Tenerife (Canary Islands) . . . . . . . . . 8
2.1.1.1 Monta˜na Reventada eruption . . . . . . . . . . . . . . . . 10
2.1.1.2 Historical volcanism in Tenerife . . . . . . . . . . . . . . . 11
2.2 Magma interactions and mixing . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Fractal analysis of mixing textures . . . . . . . . . . . . . . . . . . . 12
2.2.2 Time scales of magma mixing . . . . . . . . . . . . . . . . . . . . . 14
2.3 Unrest data of monogenetic eruptions . . . . . . . . . . . . . . . . . . . . . 15
3 Results 17
3.1 Fractal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Constraining of rheological properties from the fractal analysis results 19
3.1.2.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2.2 Water content estimation . . . . . . . . . . . . . . . . . . 23
3.2 Historical eruptions of Siete Fuentes, Fasnia and Arafo . . . . . . . . . . . . 24
3.2.1 Whole-rock chemistry and petrology . . . . . . . . . . . . . . . . . . 24
ix
CONTENTS
3.2.2 Mineral composition and chemical zoning . . . . . . . . . . . . . . . 25
3.2.2.1 Olivine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2.2 Clinopyroxene . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Assessing the effects of crystal accumulation and
geothermobarometrical calculations . . . . . . . . . . . . . . . . . . 29
3.2.4 Magma mixing processes and their time scales . . . . . . . . . . . . 32
3.2.4.1 Magma plumbing system . . . . . . . . . . . . . . . . . . 32
3.2.4.2 Time scales of magmatic processes . . . . . . . . . . . . . 33
3.3 Unrest data of monogenetic eruptions . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Details of the seismicity and brief petrological review . . . . . . . . . 38
3.3.1.1 Canary Islands (Spain) . . . . . . . . . . . . . . . . . . . 38
3.3.1.2 Michoacan-Guanajuato monogenetic volcanic field (Mexico) 42
3.3.1.3 Higashi-Izu monogenetic volcanic field (Japan) . . . . . . 42
3.3.1.4 Goropu Mountains (Owen Stanley Ranges, Papua) . . . . . 43
3.3.1.5 Heimaey (Iceland) . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Comparison between factual accounts and monitored unrest data . . . 43
4 Discussion 45
4.1 The role of coherent and active regions in the mixing area . . . . . . . . . . . 46
4.2 Integration of petrological and unrest data . . . . . . . . . . . . . . . . . . . 48
4.3 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Conclusions and Future work 53
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
57
73
References
A Historical accounts of unrest
B Fractal analysis of enclaves as a new tool for estimating rheological
properties of magmas during mixing: The case of Monta˜na Reventada
(Tenerife, Canary Islands) 83
C Timing of magmatic processes and unrest associated with mafic historical
monogenetic eruptions in Tenerife Island 85
x
CONTENTS
D Years to weeks of seismic unrest and magmatic intrusions precede
monogenetic eruptions 87
xi