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SUMMARY 

The near-surface beneath our feet is the portion of the Earth that affects and is more impacted 

by human activities and yields important mineral and energy resources. It is, therefore, of the 

utmost interest to characterize the first meters of the subsurface and to accurately quantify its 

physical, structural, chemical, and biological properties. To overcome the limitations of direct 

measurements obtained from invasive methods, non-invasive geophysical methods have been 

applied in the modelling and characterization of complex and heterogeneous near-subsurface 

environments. Particularly frequency-domain electromagnetic (FDEM) induction methods 

have become one of the most widely used geophysical methods in near-surface applications 

due to their versatility, cost-effectiveness, and data sensitivity to subsurface changes of two 

physical properties: electrical conductivity (EC) and magnetic susceptibility (MS). 

However, mapping geophysical data into numerical subsurface models concerns solving an 

ill-posed and nonlinear geophysical inverse problem with multiple solutions. While 

deterministic geophysical inverse solutions allow predicting smooth representations of the 

subsurface, they do not account for uncertainties and are unable to directly integrate direct 

observations, a probabilistic framework allows overcoming these limitations. 

This thesis combines the advantages of FDEM induction measurements with the potential of 

probabilistic inversion and introduces a geostatistical FDEM inversion method to 

simultaneously model the spatial distribution of the subsurface EC and MS and assess the 

uncertainty of the predicted results. The proposed method is benchmarked with an alternative 

statistical-based FDEM inversion method. Since probabilistic inversion methods are 

computationally demanding when solving for large-scale three-dimensional inverse problems, 

the iterative geostatistical FDEM inversion is coupled with random tensor decomposition to 

alleviate the computational burden. From a multi-geophysical inversion approach, this thesis 

also presents a joint inversion method of electrical and electromagnetic data to reduce the 

uncertainty of the predicted subsurface models in near-surface applications. The methods are 

illustrated in both realistic synthetic and real application examples. 

KEYWORDS: Near-surface modelling, Geostatistical FDEM inversion, FDEM data, Electrical 

data, Joint geophysical inversion. 
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RESUMO 

A subsuperfície debaixo dos nossos pés é a parte da Terra que mais interage com actividades 

humanas e que armazena uma parte importante das águas subterrâneas e recursos minerais. 

É, portanto, fundamental caracterizar os primeiros metros da subsuperfície e quantificar com 

precisão as suas propriedades físicas, estruturais, químicas e biológicas. Para ultrapassar as 

limitações espaciais de medições directas por métodos invasivos, métodos geofísicos não 

invasivos têm sido aplicados na modelação e caraterização de ambientes subsuperficiais 

complexos e heterogéneos. Em particular, os métodos de indução electromagnética no 

domínio da frequência (FDEM) tornaram-se um dos métodos geofísicos mais utilizados nestes 

depósitos heterogéneos, devido à sensibilidade dos seus dados às alterações de duas 

propriedades físicas: a condutividade eléctrica e a susceptibilidade magnética. No entanto, 

transformar dados geofísicos em modelos espaciais da subsuperfície implica a resolução de 

um problema geofísico inverso, que é um problema não linear com múltiplas soluções. A 

resolução deste problema através de uma abordagem geoestatística permite combinar 

medições directas invasivas com dados geofísicos, para assim melhorar os modelos 

invertidos. 

Combinando as vantagens dos dados FDEM com o potencial das metodologias de inversão 

geoestatística, esta tese apresenta um método de inversão geoestatística FDEM para modelar 

a distribuição espacial das propriedades na subsuperfície e avaliar a incerteza dos resultados 

previstos. A metodologia proposta é comparada com outro método probabilístico de inversão 

FDEM. Como os métodos de inversão geoestatísticos são computacionalmente exigentes 

quando se trata de resolver problemas inversos tridimensionais de grande escala, é 

apresentado um método de inversão probabilístico com um algoritmo de aprendizagem 

automática para melhorar a performance computacional. A partir de uma abordagem de 

inversão multi-geofísica, esta tese apresenta também um método de inversão conjunta de 

dados eléctricos e electromagnéticos que visa reduzir a incerteza dos modelos de 

subsuperfície previstos. Os métodos apresentados são aplicados em casos sintéticos e reais. 

 

PALAVRAS-CHAVE: Modelação da subsuperfície, Inversão electromagnética geostatística, 

Dados electromagnéticos, Dados Eléctricos, Inversão geofísica conjunta. 
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1.1 Background 

The uppermost tens of meters beneath our feet (i.e., the near surface) are the portion of the 

Earth that affects and is most impacted by human activities: from construction to agriculture to 

repository of urban and industrial wastes. Also, yields some of our mineral and energy 

resources, which are critical to our modern lives. Therefore, it is of the utmost importance to 

characterize the near surface and to accurately quantify spatially its physical, chemical, and 

biological properties (e.g., Butler, 2005; Everett, 2013). Throughout the past century, mainly 

invasive techniques (e.g., boreholes) have been used to investigate and characterize the near 

surface. Although useful, invasive techniques are generally expensive to acquire and operate, 

impractical to implement in some locations, and provide only sparse and discrete direct 

observations with considerable limitations for the spatial characterization of such a dynamic 

system as the near surface (Pyrcz and Deutsch, 2014).  

The application of non-invasive geophysical techniques in near-surface characterization has 

increased considerably during the last decades, as the result of the recent developments on 

instrumentation equipment and improved computational capabilities. Also, these non-invasive 

geophysical techniques have been proven to be powerful tools in the spatial characterization 

of the subsurface properties, since they can acquire indirect, and virtually continuous, 

measurements of the physical properties of the subsurface (Minsley et al., 2012). These 

factors led to the use of near-surface geophysical techniques in more complex and 

heterogenous subsurface environments (e.g., landfill deposits), enabling the measurement of 

physical soil properties for an entire area of interest and the characterization of the subsurface 

in a spatially comprehensive way. 

Electromagnetic methods (EM) have the broadest application range for near-surface 

characterization, due to the wide spectrum of instrumental systems and their respective 

configurations (Reynolds, 2011). EM methods were developed during the 1920s, with the first 

application to imaging the earth through the induction of eddy currents in the subsurface 

performed by Karl Sundberg (Sundberg and Hedstroem, 1934). 

The following years witnessed an increasing development of induction-based EM equipment, 

all featured by one or more transmitter and receiver coils. Due to the ability of acquiring large 

data sets with spatially continuous information in a reasonable time frame, along with the 

versatility of the acquisition setups, EM surveys have become widely popular (Telford et al., 

1990). Based on the nature and distinct features of the EM signal transmitted, EM methods 

can be classified into two main groups: time-domain (TDEM) characterized by a transient 

source; and frequency-domain (FDEM) electromagnetic methods characterized by a 
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continuous source. With the recent development of small-loop FDEM setups, characterized by 

the small distance between the transmitter and the receiver coil(s) within a single equipment, 

increasing versatility and efficiency and resulting in faster and more reliable surveys, FDEM 

methods have become one of the most widely used geophysical methods in near-surface 

characterization. Application examples cover a wide range of areas such as: determination of 

soil salinity (e.g., Akramkhanov et al., 2014) and soil compaction (e.g., Al-Gaadi, 2012), 

groundwater surveys (e.g., Huang et al., 2017; Paepen et al., 2020) and contamination 

detection (e.g., Sainato et al., 2018), archaeological prospection (e.g., Bongiovanni et al., 

2008; De Smedt et al., 2013; Saey, et al., 2016), landfill surveys (e.g., Van De Vijver and Van 

Meirvenne, 2016; Van De Vijver, 2017) and soil pollution (e.g., Guérin et al., 2004; Blaha et 

al., 2008), geotechnical characterization (e.g., Saey et al., 2015) and geological 3D imaging 

(e.g., Monteiro Santos et al., 2011), and unexploded ordnance (UXO) detection (e.g., O’Neill 

et al., 2005; Saey et al., 2011). All these FDEM applications examples are characterized by 

shallow depths of investigations (~ 4-20 m) and the ability to track lateral and/or vertical 

variations of electromagnetic parameters.  

FDEM induction measurements can be linked to subsurface electrical conductivity (EC), 

magnetic susceptibility (MS) and dielectric permittivity by assuming an infinite homogeneous 

halfspace below the FDEM sensor (Hanssens et al., 2019). The spatial distributions of these 

properties can be resolved by the variations of the recorded electromagnetic data. Since small-

loop FDEM methods work in low-frequency regimes (far below 105 Hz), the influence of 

dielectric permittivity on the acquired FDEM data can be considered negligible as it is only 

relevant at high-frequency (Hanssens et al., 2019). As this thesis focuses on methods and 

applications that take advantage of small-loop FDEM data, the focus was only on the 

investigation of electrical conductivity and magnetic susceptibility. 

Despite these recent developments in FDEM methods for near-surface characterization, most 

of the potential of these methods has not yet been widely addressed. Particularly, the 

quantitative prediction of the near-surface properties from recorded FDEM data (i.e., FDEM 

inversion), and how direct and indirect measurements can be integrated in a consistent way, 

given their distinct nature. 

The standard approach of translating geophysical data into numerical subsurface models is to 

solve a geophysical inverse problem (Tarantola, 2005). Opposite to solving a forward problem 

(i.e., the theoretical mathematical calculation of synthetic geophysical data from a known set 

of model parameters) a geophysical inversion aims at predicting the unknown spatial 

distribution of the model parameters. Under the scope of this thesis, the model parameter 

space is defined by the electrical conductivity and magnetic susceptibility, through the changes 
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imposed by these properties on the observed geophysical data. Geophysical inverse problems 

are ill-posed and nonlinear inverse problems with no unique or stable solutions, which arises 

from the fact that small differences in the input parameters can produce large differences in 

the solutions (Tarantola, 2005). The non-uniqueness of the solution is a result of the multiple 

parameter configurations that can produce similar data to the one observed, resulting in 

uncertain predictions. 

Geophysical inverse methods can be categorized as either deterministic or probabilistic. Since 

probabilistic approaches are more computationally expensive and require a larger degree of 

expertise, the majority of methods currently used to solve a FDEM inverse problem are 

deterministic approaches (e.g., Zhdanov, 2002). Deterministic inverse methods rely on 

regularization methods to transform an ill-posed into a well-posed problem. These 

regularization methods, such as Tikhonov regularization (Tikhonov and Arsenin, 1977), 

simplify the inverted solution, predicting a single smooth representation of the subsurface and 

ignoring uncertainties about the predictions. 

Opposed to a single solution outcome, probabilistic geophysical inversion methods predict the 

subsurface model parameters as probability distribution functions. These methods allow 

obtaining, or approximating, a posterior probability distribution of the model parameter space. 

In these types of methodologies, the non-uniqueness of the geophysical inversion is captured 

in the final solution and the uncertainty of the modelling procedure can be assessed. The 

growth of computational resources in the last decades allowed the development of probabilistic 

geophysical inversion methods and the spread of their application (Grana et al., 2022). Among 

these probabilistic methods, iterative geostatistical inversion methods emerge as a powerful 

tool to quantify physical subsurface properties, as they provide a framework to data integration 

and detailed description of the subsurface spatial heterogeneities (e.g., Azevedo and Soares, 

2017; Tylor-Jones and Azevedo, 2022).  

The inversion of electromagnetic data using probabilistic methods for modelling the near-

surface physical properties is still underdeveloped and far from being the standard modelling 

technique (Bobe, 2020). This is mainly due to the relatively large size of the electromagnetic 

data sets, which makes probabilistic approaches computationally expensive, and to the highly 

non-linear nature of the forward model and the corresponding computational cost. This thesis 

proposes alternative approaches to close the existing gap related to the lack of geostatistical 

FDEM inversion methods.  

Along with electromagnetic data, electrical tomography near-surface techniques, such as 

direct current (DC) resistivity methods, have demonstrated their efficiency to characterize near-

surface heterogeneous environments such as ground water contamination, archaeological 
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mapping, or mineral prospecting. These methods are sensitive to subsurface changes of 

electrical resistivity (or electrical conductivity) (Reynolds, 2011). These electrical tomography 

methods can image the subsurface by deriving the spatial distribution of EC from the 

combination of different measurements configurations. Electromagnetic and electrical data are 

often acquired jointly but interpreted and modelled separately due to the nonlinearity of the 

inverse problem. Nevertheless, inverting both geophysical data sets in a joint inversion 

methodology can improve the accuracy of the predicted results due to the differences in the 

spatial resolution of both methods and the complementary information about the subsurface 

retrieved from each data set (Moorkamp, 2017). However, handling the differences in the 

resolution and nature of both methods is not straightforward and prone to uncertainties. This 

can be overcome by solving the joint inversion problem in a geostatistical framework. This 

thesis presents a multi-geophysical inversion approach, combining FDEM data and direct 

current resistivity data, focusing on the advantages of each geophysical method and their 

potential to model the spatial heterogeneities of a near-surface environment.  

1.2 Research objectives 

The main objective of this thesis is the development and implementation of iterative 

geostatistical FDEM, and joint FDEM and electric resistivity tomography (ERT), inversion 

methods able to predict the spatial distribution of EC and MS at high spatial resolution. These 

methods should be able to cope with complex and heterogeneous environments, while 

simultaneously assessing the uncertainty of the predicted models. In more detail, the 

objectives of this thesis can be described in the following four sub-objectives: 

Objective one of this thesis is the development of a synthetic data set based on direct and 

laboratory measurements obtained from samples acquired in a complex near-surface deposit 

corresponding to a mine tailing. This data set is used to validate the inversion methodologies 

presented in this thesis. 

Objective two of this thesis is the development and implementation of an iterative 

geostatistical frequency-domain electromagnetic inversion methodology that allows to 

simultaneously predict EC and MS. The proposed method can integrate existing direct 

measurements, assess uncertainties related to the inverse models and account for a priori 

geological knowledge about the spatial distribution of the soil properties.  

Objective three of this thesis is to tackle the computational cost that iterative FDEM inversion 

methodologies have when solving large-scale three-dimensional problems in near-surface 

applications. Machine learning is applied for dimensionality reduction and the inversion is 
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performed in the reduced space without compromising the exploration of the model parameter 

space. 

Objective four of this thesis is the development and implementation of an iterative 

geostatistical geophysical joint inversion approach to increase the accuracy of the predicted 

subsurface models while reducing their uncertainty. 

1.3 Structure of the thesis 

This thesis follows a structure based on research that is published, or submitted for publication, 

in international peer-reviewed journals. The thesis is divided into six chapters and its overall 

structure is outlined in Figure 1.1.  

Chapter one underlines the rationale behind this thesis, the research questions that it proposes 

to answer, the main objectives of this work and describes the structure of the thesis.  

Chapter two addresses the first and second objectives of this thesis. It describes the 

development of a realistic synthetic data set used to validate the geostatistical inversion 

methodologies developed and implemented under the scope of this thesis. It also describes 

an iterative geostatistical FDEM inversion (GEMI), validated in the realistic synthetic data set 

and tested in a real data set application example. The work of this chapter is under review for 

publication in a peer-reviewed journal. 

Chapter three extends objective two with a comparison between the iterative geostatistical 

inversion method of FDEM data presented in chapter two and a probabilistic inversion method 

of FDEM data based on the Kalman Ensemble Generator technique. Both FDEM inversion 

methods are validated and tested on the same synthetic data set, exploring the potential and 

limitations of each method. The work of this chapter is published in a peer-reviewed journal 

(Narciso et al., 2022).  

Chapter four presents a FDEM inversion methodology that combines an ensemble smoother 

with multiple data assimilation (ES-MDA) and model re-parameterization via randomized 

tensor decomposition (RTD), to simultaneously predict electrical conductivity and magnetic 

susceptibility from measured FDEM data. This chapter focuses on objective three and tries to 

overcome the computational costs associated with solving large-scale three-dimensional 

problems in near-surface modelling techniques. The method is applied to synthetic and noisy 

real data sets. The work of this chapter is published in a peer-reviewed journal (Liu et al., 

2023). 
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Chapter five presents a geostatistical joint inversion methodology of electromagnetic and 

electrical resistivity data. This multi-geophysical inversion approach was developed and 

implemented to improve the detection of near-surface heterogeneities and spatial structures 

of the properties of interest when compared to single geophysical inversion methods. The 

proposed method aims at objective four. The joint inversion method is validated with a synthetic 

data set and then tested on a real data set. The work of this chapter is described in a 

manuscript under review for publication in a peer-reviewed journal.  

Chapter six summarizes the main conclusions of this thesis and links the content and 

conclusions of each chapter to the corresponding objectives. Also, it discusses the limitations 

of the proposed methods and potential future research perspectives. 

 

Figure 1.1 Structure of the thesis. 
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1.4 Research outcomes 

In addition to the publications in international peer-reviewed journals on which the chapters of 

this thesis are based, the research developed under the scope of this thesis was presented at 

the following international scientific conferences, as poster or oral presentation:  

Oral presentations 

• Narciso, J., Azevedo, L., and E. Van De Vijver, 2023, Geostatistical joint inversion of 

FDEM and ERT data: a three-dimensional real case application. Near Surface 

Geoscience Conference 2023, EAGE, Edinburgh, UK, 3-7 September, 

doi.org/10.3997/2214-4609.202320177 (Extended Abstract). 

• Narciso, J., Azevedo, L., and E. Van De Vijver, 2022, Geostatistical joint inversion of 

frequency-domain electromagnetic data and direct current resistivity data for modelling 

near-surface deposits. Near Surface Geoscience Conference 2022, EAGE, Belgrade, 

Serbia, 18-22 Sep. doi.org/10.3997/2214-4609.202220178 (Extended Abstract). 

• Narciso, J., Van De Vijver, E., and L. Azevedo, 2022, Modelling the complexity beneath 

our feet: A joint inversion FDEM and ERT technique. GeoEnv 2022, Parma, Italy, 22-

24 June. 

• Narciso, J., Azevedo, L., Van De Vijver, E., and M. Van Meirvenne, 2021, Geostatistical 
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The detailed characterization of near-surface deposits is important for both 

environmental and economic reasons. These shallow subsurface systems can be 

very complex and heterogenous due to natural dynamics and anthropogenic 

interferences. Modelling techniques based exclusively on direct sampling generate 

limited informed three-dimensional models of the near-surface. Geophysical 

methods provide valuable and additional information to model the spatial 

distribution of the near-surface for locations where direct observations are not 

available. From this set of methods, frequency-domain electromagnetic induction 

(FDEM) has been successfully applied to image complex near-surface deposits. 

Yet, predicting the spatial distribution of relevant subsurface properties from 

geophysical data, and the integration of direct observations, is not straightforward. 

It requires solving a challenging geophysical inversion problem. Geostatistical 

modelling tools have been effectively applied to couple direct observations with 

geophysical data such as seismic reflection. This chapter presents an iterative 

geostatistical FDEM inversion method able to integrate data from direct 

measurements of the near-surface with surface loop-loop FDEM measurements to 

simultaneously predict high-resolution models of electrical conductivity and 

magnetic susceptibility, and their associated uncertainty. The iterative 

geostatistical inversion method is based on stochastic sequential simulation and 

co-simulation as model perturbation and update techniques. The iterative 

optimization is based on the local data misfit between observed and simulated 

FDEM data, weighted by the sensitivity of the acquisition equipment. The proposed 

method is first demonstrated for a synthetic landfill data set created based on real 

data collected at a mine tailing disposal site in Portugal, and on a real data set 

collected at a site with archaeological features in Knowlton, UK. The results show 

the ability of the proposed method to accurately predict and characterize the spatial 

distribution of electrical conductivity and magnetic susceptibility down to the depth 

of interest while reproducing the recorded FDEM data. 

2.1 Introduction 

Subsurface environments can be highly complex and heterogeneous due to interacting 

processes of both natural and anthropogenic origins (e.g., Everett, 2013; Lehmann and Stahr, 

2007; Morel et al., 2015; Reynolds, 2011). The effective sustainable management and use of 

the subsurface natural resources, especially in urban environments, including the sustainable 

remediation and redevelopment of contaminated or otherwise degraded natural or 

anthropogenic deposits, as well as climate-smart urban land-use planning, relies on the 
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availability of high-quality subsurface information. Methods for near-surface modelling and 

characterization based on discrete observations from conventional invasive sampling 

techniques, such as drilling and core sampling, have limitations to capture the spatial variability 

of heterogeneous near-surface systems (e.g., Van De Vijver, 2017). The detailed 

characterization and monitoring of these heterogeneous subsurface environments require 

novel and efficient data modelling methodologies that allow for the prediction of accurate high-

resolution and spatially comprehensive subsurface models, while also providing a quantitative 

measure for the associated uncertainties. The latter can be critical information when 

subsurface models are used as decision-making support in land (re)development projects with 

important environmental and economic impacts. 

Near-surface geophysical surveys have emerged as complementary and powerful data 

sources that, combined with direct observations for calibration and validation of the results, 

enable predicting the spatial distribution of subsurface physical properties of interest to 

characterize heterogeneous near-surface systems (e.g., Butler, 2005; Di Maio et al., 2018; 

Dumont et al., 2017; Narciso et al., 2022; Persico et al., 2018). From the non-invasive 

geophysical techniques applied in near-surface characterization, electromagnetic surveys 

have been one of the most widespread and applied techniques (e.g., Delefortrie et al., 2014a; 

Doolittle and Brevik, 2014; Moghadas et al., 2017; Triantafilis and Monteiro Santos, 2013). 

Particularly loop-loop frequency-domain electromagnetic induction (FDEM) methods have 

demonstrated their potential in various application domains, based on their compatibility with 

a wide variety of subsurface conditions, and capacity to collect high-resolution data in a time-

efficient way, as direct ground contact between the instrument and the ground is not required. 

Besides, FDEM measurements are simultaneously sensitive to two key subsurface properties, 

electrical conductivity (EC) and magnetic susceptibility (MS). EC relates, amongst others, to 

soil salinity, texture, organic matter and moisture content, and bulk density. The MS has been 

proven useful for mapping natural variations in soil mineralogy as well as mapping traces of 

anthropogenic soil interference (Viscarra Rossel et al., 2011). Knowledge of the spatial 

variability of these subsurface properties can often be linked to subsurface structures and 

processes of interest in various application domains, such as agriculture (e.g., Pedrera-Parrilla 

et al., 2016; von Hebel et al., 2021), landscape archaeology (e.g., De Smedt et al., 2013), and 

environmental assessment (e.g., Van De Vijver et al., 2015).  

Multi-receiver FDEM data, considering both the in- and quadrature-phase (IP and QP, 

respectively) components of the signal, represent indirect measurement of the subsurface that 

can be used to predict the subsurface spatial distributions of EC and MS by solving a 

geophysical inversion problem (i.e., the FDEM inversion problem). Due to insufficient data, the 

bandlimited nature of the FDEM data, measurement noise and random and systematic errors 



Chapter 2 

14 
 

in data acquisition, the FDEM inversion problem is ill-posed, nonlinear and has multiple 

solutions (Tarantola, 2005).  

FDEM inversion methods might be categorized into two main groups: deterministic and 

probabilistic methods. Most examples available in the literature to predict subsurface 

properties from recorded FDEM data use deterministic methods, which predict a single, 

smooth, best-fit subsurface model (e.g., Farquharson et al., 2003; Monteiro Santos, 2004; 

Sasaki et al., 2010; Dafflon et al., 2013; Huang et al., 2016). In addition, the uncertainty 

assessment of deterministic FDEM inversion methods is limited.  

Subsurface models predicted from probabilistic FDEM inversion techniques have 

demonstrated to be more suitable to model heterogeneous subsurface systems and assess 

uncertainties about the predictions, thereby providing support for more informed decision-

making (e.g., Jadoon et al., 2017; Moghadas and Vrugt, 2019). Besides, the increase in 

available computational resources led to a growth in the number of publications about this type 

of FDEM inversion methods in recent years (e.g., Minsley, 2011; Guillemoteau et al., 2016; 

Bobe et al., 2019; Narciso et al., 2022). 

Amongst the probabilistic geophysical inversion methods, iterative geostatistical geophysical 

inversion methods (e.g., Hansen et al., 2006; Azevedo and Soares, 2017; Grana et al., 2022) 

have proven their value to predict high resolution rock and/or elastic properties models of the 

deep subsurface from seismic reflection data. These methods allow integrating different types 

of data (e.g., borehole data and a priori geological knowledge), provide a detailed description 

of the spatial distribution of the properties of interest (i.e., subsurface models with higher 

variability than the observed data), and assess the spatial uncertainty of the predicted model, 

but their application to near-surface geophysical techniques – other than seismic methods – is 

still very limited. 

The application of this kind of methods to FDEM is particularly relevant considering FDEM 

inversion results are intrinsically sensitive to three-dimensional (3D) heterogeneity (e.g., 

Delefortrie et al., 2019; Moghadas et al., 2012) while, due to the computational costs involved 

in the computation of 3D forward models (i.e., an electromagnetic numerical simulator), the 

majority of FDEM inversion studies presented in the literature uses one-dimensional (1D) 

forward models (Guillemoteau et al., 2017), mostly assuming a horizontally layered earth and 

ignoring lateral variability. 

In this chapter is presented an iterative geostatistical FDEM inversion (GEMI) method to 

simultaneously predict the spatial distribution of EC and MS, by integrating surface geophysical 

data and direct, in-situ, measurements in the same workflow. Stochastic sequential simulation 
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and co-simulation are used for model generation and update. The iterative procedure is driven 

by the misfit between predicted and observed FDEM data and depends on the sensitivity of 

the acquisition equipment in depth. The results of the proposed FDEM inversion method are a 

set of high-resolution subsurface EC and MS models that fit equally well the observed FDEM 

data for all the configurations considered. This ensemble of models can be used for example 

to assess regions of higher and lower uncertainty.  

The proposed inversion method is illustrated for a synthetic and a real data set. The synthetic 

example shows the reliability of the method in reproducing the true EC and MS spatial 

distribution and the real case example allows assessing the performance of the method under 

real noise conditions. The results of the real case application are compared against borehole 

data that were not considered during the inversion (i.e., blind test).  

The next section describes in detail each step of the proposed methodology. Then, are 

presented the results of its application to a 3D synthetic landfill mining data set created based 

on real data collected at a mine tailing disposal site in Portugal, and to a 3D real data set from 

a study area located in Knowlton, UK (Delefortrie et al., 2018), where the subsurface consists 

of Quaternary deposits overlying Cretaceous deposits. Finally, the results are discussed, and 

the main conclusions summarized.  

2.2 Methodology 

The GEMI method simultaneously predicts the spatial distribution of EC and MS from FDEM 

data (Figure 2.1).  

 

Figure 2.1 Schematic representation of the iterative geostatistical FDEM inversion workflow. 

The relationship between the model parameters and the FDEM data can be mathematically 

summarized by:  

𝐦 = F−1(𝐝𝐨𝐛𝐬) + 𝛜,     (2.1) 
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where 𝐦 are the model parameters (i.e., EC and MS), 𝐝𝐨𝐛𝐬 are the observed FDEM data, 𝐅 

represents the nonlinear forward model that maps the model (𝐦) into the data (𝐝𝐨𝐛𝐬) domain, 

and 𝛜 represents measurement errors and approximations to the physics governing the system 

under investigation (Tarantola, 2005).  

The FDEM inversion problem is solved with an iterative geostatistical inversion technique that 

can be summarized in three main stages: i) perturbation of the model parameter space with 

stochastic sequential simulation and co-simulation (Deutsch and Journel, 1998); ii) 

computation of the synthetic FDEM responses and the sensitivity of these responses towards 

changes in EC and/or MS at a certain depth layer 𝑛, using the 1D FDEM forward model 

proposed by Hanssens et al. (2019) and assuming a layered half-space model; and iii) 

stochastic optimization with stochastic sequential co-simulation (Deutsch and Journel, 1998), 

driven simultaneously by the misfit between true and predicted FDEM responses taking into 

account the predicted depth of investigation (DOI) as retrieved from the sensitivity provided by 

the forward model and the different coil configurations that might exist in the acquisition system 

(as defined in ii)). These steps are described in detail below. 

2.2.1 EC and MS model generation 

The GEMI methodology starts with the generation of a set of Ns models of EC and MS with 

stochastic sequential simulation (Soares, 2001). Each model is simulated – in the first iteration 

– or co-simulated – in the subsequent iterations – for the entire inversion grid at once resulting 

in 3D or two-dimensional (2D) models depending on the recorded FDEM data. Available direct 

measurements of EC and MS from in-situ measurements, or borehole data, are used as 

conditioning experimental data in the geostatistical simulation. The spatial continuity pattern of 

the simulated models is defined by a variogram model, in 2D or 3D, fitted to experimental 

variograms computed from the available direct measurements (or borrowed from analogue 

areas or expert knowledge). In the iterative geostatistical FDEM inversion method proposed 

here, we use direct sequential simulation (DSS, Soares, 2001) and co-simulation with joint 

probability distributions (Horta and Soares, 2010) as model perturbation technique of EC and 

MS. Unlike sequential Gaussian simulation (SGS) (Deutsch and Journel, 1998), these 

stochastic sequential simulation techniques do not impose any condition on the data 

distribution (i.e., Gaussian) of the properties to be simulated, thereby avoiding the intermediate 

step of a data transformation of the distribution of the properties to be simulated. Instead, the 

marginal and joint distributions as inferred from the experimental data are used in the 

simulation and co-simulation procedures. For complex and highly nonlinear relationships 

between primary geophysical and secondary petrophysical properties related to 

electromagnetic induction measurements, the use of non-Gaussian stochastic sequential co-



GEMI method 

17 
 

simulation techniques allow a better reproduction of the relationship between variables as 

retrieved from the available direct measurements.  

As the iterative inversion rely on stochastic sequential simulation and co-simulation as model 

perturbation and update technique, all the subsurface models generated during the iterative 

procedure reproduce the exact values of the borehole data at their locations, the global 

marginal and joint distributions of each property, and the imposed spatial continuity patterns 

expressed by variogram models. 

2.2.2 Forward response and sensitivity modelling 

The forward model (Eq. 2.1) is necessary to compute the theoretical FDEM instrument 

response, calculated from the differences between the primary electromagnetic field generated 

from the transmitter coil and the secondary electromagnetic field generated from conducting 

material, of a loop-loop system that is characterized by one transmitter coil and one or multiple 

receiver coils (Hanssens et al., 2019). The forward model can be formulated in 1D, 2D or 3D 

(Auken and Christiansen, 2004, Cox and Zhdanov, 2008, Farquharson et al., 2003). Here, we 

address the 1D vertical variations of both EC and MS, yet forward models can also address 

only EC, or even EC, MS and dielectric permittivity simultaneously. 

The GEMI method uses a forward model that calculates the theoretical 1D normalized 

electromagnetic (EM) response according to Maxwell’s equations and expressed in in-phase 

(IP) and quadrature-phase (QP) components, for a horizontal 𝑛-layered half-space model 

(Hanssens et al., 2019). Since it is a low-frequency application, the IP and QP components 

are mainly influenced by EC and MS, in a quasi-static approximation, neglecting the dielectric 

permittivity. We calculate Ns synthetic IP and QP responses per coil configuration used in the 

acquisition of the field data, for each pair of EC and MS models generated in the previous 

iteration, with Ns representing one model of each property. 

This forward model considers a FDEM system positioned at the surface, or at a certain height 

above the surface (ℎ), of an 𝑛-layered subsurface model. It uses Hankel functions, numerically 

calculated by means of a Guptasarma and Singh digital filter (Guptasarma and Singh, 1997), 

to determine a superposition of Bessel functions of the zeroth and/or first order that model the 

EM responses. The total magnetic field 𝐻 (A/m; primary field, 𝐻𝑃, plus secondary field, 𝐻𝑆) is 

calculated for the two types of coil configurations used in the synthetic and real case 

applications, the horizontal co-planar (HCP) and the perpendicular (PRP) coil configurations, 

for a Z-directed magnetic dipole source located at (0,0, −ℎ): 

𝐻𝑍𝑍 =
𝑀

4𝜋
∫ [𝑒−𝑢0(𝑧+ℎ) − 𝑟𝑇𝐸𝑒𝑢0(𝑧−ℎ)]

∞

0
𝜆2𝐽0(𝜆𝑟)𝑑𝜆,   (2.2) 
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𝐻𝑍𝑋 = −
𝑀

4𝜋

𝑥

𝑟
∫ [𝑒−𝑢0(𝑧+ℎ) − 𝑟𝑇𝐸𝑒𝑢0(𝑧−ℎ)]

∞

0
𝜆2𝐽1(𝜆𝑟)𝑑𝜆,  (2.3) 

where 𝑀 is the transmitter moment (A/m2), 𝑥 and 𝑧 are the coordinates (m) of the receiver coil, 

ℎ is the height (m) of the transmitter coil, 𝑟 is the transmitter-receiver offset (m), 𝐽0 and 𝐽1 are, 

respectively, the Bessel functions of zeroth and first order, 𝑢0 is the wave-number of zeroth 

layer, 𝜆 the Hankel transformation, and 𝑟𝑇𝐸 the reflection coefficient. In the methodology 

proposed herein the reflection coefficient approach is used, rather than the propagation matrix 

approach, because it is more computationally efficient. The reflection coefficient is defined by: 

𝑟𝑇𝐸 =
𝑌0−𝑌̂1

𝑌0+𝑌̂1
,      (2.4) 

where 𝑌0 is the intrinsic admittance of the air half-space, and 𝑌̂1 is the surface admittance (at 

𝑧 = 0), which can be determined recursively by starting at the basement half-space (𝑛 = 𝑁) 

toward the surface (𝑛 = 1), in a horizontally 𝑛-layered half-space model.  

The free-space magnetic fields 𝐻0 (A/m) used in normalization are given for a Z-directed 

magnetic dipole source located at (0,0, −ℎ): 

𝐻𝑧
0 =

𝑀

4𝜋
∫ [𝑒−𝑢0(𝑧+ℎ)]

∞

0
𝜆2𝐽0(𝜆𝑟)𝑑𝜆.    (2.5) 

The normalized total magnetic field 𝐻𝑁 (in parts-per-million, ppm) is then given by: 

𝐻𝑁 =
𝐻− 𝐻𝑃

𝐻0 ∙ 106 =  
𝐻𝑆

𝐻0 ∙ 106.     (2.6) 

The recent FDEM instruments use a phase-sensitive measurement between primary and 

secondary field, i.e., an IP (or real) and QP (or imaginary) measurement (in ppm): 

IP = Re(𝐻𝑁),      (2.7) 

QP = Im(𝐻𝑁).      (2.8) 

Consequently, FDEM data 𝐝𝐨𝐛𝐬 (Eq. 2.1) are expressed in parts-per-million (ppm) of the total 

magnetic field 𝐻 (A/m), related to the magnetic field of the zeroth layer (free space), 𝐻0 (A/m). 

This implementation provides a sensitivity modelling, which represents how sensitive the 

forward model is toward changes of a physical property 𝐦 (i.e., EC and MS) at a specific layer 

𝑛 of the layered half-space. The sensitivity modelling thus calculates the vertical sensitivity 

distribution related to each physical property within the considered layered model, through a 

brute-force method, or perturbation method (McGillivray and Oldenburg, 1990), that uses a 

finite-difference formula based on the Taylor series for 𝐻𝑁(𝐦) and 𝐻𝑁(𝐦 + ∆𝐦𝑛) of the 
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magnetic fields, where 𝐦 is EC or MS, and ∆𝐦𝑛 is the perturbation of the physical property 

(Figure 2.2). The forward model must be resolved 𝑁 times, with 𝑁 representing the number of 

layers, each time with a perturbation ∆𝐦𝑛 of the governing 𝑛th layer model parameter 𝐦𝑛, with 

𝐦 representing one of the physical properties. The sensitivity modelling (derived from Eqs. 2.2 

and 2.3) can be used for estimating the depth of investigation (DOI). 

 

Figure 2.2 Relative normalized sensitivity analysis of IP and QP at depth for each coil configuration 

used in the synthetic case application, at position 10 m on the profile shown in Figure 2.3. 

2.2.3 Stochastic model optimization 

The model optimization is achieved by the maximization of the similarity coefficient (𝐒) 

computed between predicted and observed FDEM data for all the coil configurations (tcoils). 

Each coil configuration corresponds to an offset (i.e., the distance between transmitter(s) and 

receivers) and an orientation (i.e., HCP or PRP). 𝐒 is calculated per coil configuration and for 

each geostatistical realization (Ns) of EC and MS generated at a given iteration, following: 

𝐒j,t =
2∗∑ (𝐱s

t ∗𝐲s
j,t

)N
s=1

∑ (𝐱s
t )

2N
s=1 +∑ (𝐲s

j,t
)N

s=1

2    ,    j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,   (2.9) 

where 𝐱 and 𝐲 are the observed and synthetic QP (or IP) data with N samples, respectively. 

By construction 𝐒 is bounded between -1 and 1, but negative values are truncated at zero so 

it can be used as secondary variable for the stochastic sequential co-simulation of a new set 

of Ns models in the subsequent iteration, constraining the realizations of that iteration. 𝐒 is 

sensitive simultaneously to the shape and magnitude of the recorded IP and QP signal. We 

opted for this metric to avoid an objective function with two terms (i.e., both components of the 

data), dependent on user-defined parameters to weigh each term of the objective function. 𝐒 

is not computed for the entire series of the FDEM data at once, but for a set of non-overlapping 

2D horizontal windows that visit the entire data series. These windows are randomly created, 

with different sizes, at the beginning of each iteration. Using multiple windows for the entire 

data grid (i.e., the FDEM measurement locations, with tcoils configurations per FDEM 
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measurement location), with each window having a smaller number of samples than the entire 

data set, this approach allows reaching higher 𝐒 values at early stages of the iterative 

procedure. This procedure is similar to the one proposed in Azevedo and Soares (2017) for 

geostatistical seismic inversion. 

Each 𝐒 computed for each grid location is then weighted in depth by the normalized sensitivity 

curves of each coil configuration (Figure 2.2) obtained for the corresponding EC and MS 

resulting from the FDEM forward model. In the application examples shown below, assumption 

have been made that EC is directly dependent on QP and MS on IP (alternative assumption 

might be considered): 

SEC
j,t = 𝑠𝑒𝑛𝑠𝐸𝐶(z)j,t ∗ 𝐒j,t,   j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,  (2.10) 

SMS
j,t = 𝑠𝑒𝑛𝑠𝑀𝑆(𝑧)j,t ∗ 𝐒j,t,   j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,  (2.11) 

where 𝑠𝑒𝑛𝑠𝐸𝐶 and 𝑠𝑒𝑛𝑠𝑀𝑆 are the normalized sensitivities, in depth, at each FDEM data 

location within the inversion grid. This approach allows to weigh the assimilation of each coil 

configuration to the predicted EC and MS models in the subsequent iteration. The similarity 

obtained for a given coil configuration/offset influences in depth the stochastic update of EC 

and MS.  

At the end of each iteration, auxiliary volumes of EC and MS are built with the parts of the Ns 

simulated EC and MS models (subvolumes of the inversion grid) that generate predicted QP 

and IP data with the highest 𝐒 for a given location, considering simultaneously all the tcoils (i.e., 

coil configurations). The volumes of EC and MS are stored as auxiliary volumes along with the 

corresponding 𝐒.  

In the subsequent iteration, these auxiliary variables (i.e., the selected 𝐒 and corresponding 

EC and MS volumes) are used to co-simulate a new set of EC and MS models. For locations 

associated with 𝐒~1 the new ensemble of co-simulated models of EC and MS will be similar 

to the auxiliary volumes. On the other hand, locations with 𝐒 < 0.5 will exhibit larger variability 

within the ensemble of new models. This model update approach ensures the convergence of 

the geostatistical FDEM data inversion along the inversion procedure, with the minimization of 

the misfit between observed and predicted FDEM data. 

The proposed iterative geostatistical inversion methodology for FDEM data may be 

summarized in the following sequence of steps (Figure 1): 

i) Generation of two ensembles of Ns models of EC and MS given borehole data and 

variogram models retrieved from these borehole data, with stochastic sequential 
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simulation (Soares, 2001) – in the first iteration – and co-simulation – in the next 

iterations – with joint probability distributions (Horta and Soares, 2010), 

respectively; 

ii) Calculation of the Ns synthetic FDEM data for each pair of models simulated in i) 

using a FDEM forward model. In the application examples shown below we use the 

1D FDEM forward model proposed by Hanssens et al. (2019); 

iii) Compute 𝐒 between true and predicted FDEM data per coil configuration, within 

each of the randomly created window at the beginning of the iteration;  

iv) Weight the similarity coefficient in depth by the normalized sensitivity analysis of 

the FDEM data for all coil configurations (Eqs. 2.10 and 2.11); 

v) Build three auxiliary volumes by selecting the EC and MS local value that ensure 

the highest 𝐒 at a given location from all the Ns models of each iteration. Store the 

corresponding EC, MS and 𝐒 values; 

vi) Generate a new ensemble of EC and MS models using co-DSS and the auxiliary 

volumes resulting from v) as secondary variables;  

vii) Iterate and repeat steps ii)-vii), until the global convergence of the method reaches 

a pre-defined threshold of global 𝐒 computed between all offsets for IP and QP 

simultaneously. 

All models of EC and MS generated during the iterative geostatistical FDEM inversion are 

conditioned locally by existing borehole data for EC and MS. They reproduce the global 

marginal and joint distributions between EC and MC as inferred from the borehole data and a 

pre-defined spatial continuity pattern as imposed by a variogram model. 

The GEMI method is flexible and can be parameterized for all possible coil configurations (i.e., 

transmitter-receiver orientations and distances between the transmitter and the receiver) that 

are included in the FDEM survey data set and alternative forward models as long they provide 

a measure of sensitivity in depth. 
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2.3 Synthetic case application  

2.3.1 Data set description 

The synthetic data set used in this section comprises a three-dimensional grid of 30 by 40 by 

4 meters (i.e., length, width, depth dimension, respectively) and a cell size of 0.1 m by 0.1 m 

by 0.1 m in each dimension, respectively. The data set was created based on real data 

collected at a mine tailing disposal site in Portugal (Panasqueira), in which the main mining 

production is copper and wolfram (Narciso et al., 2020). Laboratory measurements of porosity 

and particle density on two different geological materials, fine-shaly sands and quartz-schist 

gravels, were available. This information was used as conditioning data to generate realistic 

3D numerical models of porosity, particle density and water content using geostatistical 

simulation and co-simulation (Deutsch and Journel, 1998). The variogram model for porosity 

was fitted to experimental variograms computed from the available samples. A spherical model 

was fitted, in the horizontal direction isotropy was assumed and a range of 8 m was used, in 

the vertical direction a range of 2 m was used. We assumed a nugget effect of 5% of the total 

variance of the available samples. 

Particle density and water saturation models were generated with stochastic sequential co-

simulation conditioned to the porosity model. Particle density was modelled with an 

omnidirectional spherical variogram model with a horizontal range of 8 m, a vertical range of 2 

m and a nugget effect of 5% of the total variance of the available data. The spatial continuity 

pattern of water saturation was modelled with an omnidirectional spherical variogram model 

with a horizontal range of 12 m, a vertical range of 4 m and a nugget effect of 0% of the total 

variance of the collected samples. The sequential approach intends to ensure geological 

plausibility between properties.  

EC was derived from the previously simulated models by applying Archie’s law, relating the 

bulk electrical resistivity (𝑅𝑡) of a porous medium to the porosity and the water content (Archie, 

1942):  

𝑅𝑡 = 𝑎 𝜙−𝑘𝑅𝑤𝑆𝑤
−𝒏,     (2.12) 

where 𝑎 is the tortuosity constant, assumed as 0.88, 𝜙 is the porosity, 𝑅𝑤 the electrical 

resistivity of the pore fluid, assumed as 0.25 (m), 𝑆𝑤 is the water saturation, 𝑘 is the 

cementation exponent that varies between 1.3 and 2.5 for most sedimentary rocks and was 

assumed as 1.37, and 𝒏 is the saturation exponent, which depends on the type of the pore 

fluid and was set to 2. From the lithology and range of porosity values present in the synthetic 
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model, the values of 𝑎, 𝑘 and 𝑛 were defined from Keller (1987). The EC was then calculated 

based on Archie´s second law (Archie, 1942): 

EC = 1
𝑅𝑡

⁄ .      (2.13) 

MS was simulated independently as it does not depend on EC. We used unconditional 

stochastic sequential simulation algorithms (Deutsch and Journel, 1998) and imposed an 

omnidirectional spherical variogram model with a horizontal range of 12 m, a vertical range of 

4 m and a nugget effect of 0% of the total variance of the experimental data. These variogram 

ranges agree with common ranges for unconsolidated sediments (Hudson et al., 1999).  

After the generation of the true 3D model for EC and MS, four boreholes were extracted equally 

spaced along one 2D transect. The data from the four boreholes are considered as 

experimental data to condition the iterative geostatistical inversion. In this way we include 

uncertainty in the spatial continuity model used within the inversion. Table 2.1 summarizes the 

main parameters of the variogram models imposed for the geostatistical FDEM inversion. The 

resulting variogram models have a higher nugget effect than the true ones as these were fitted 

to experimental variograms calculated from the four-borehole data. The nugget effect 

represents the lack of knowledge about EC and MS at the small-scale. 

Table 2.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total 

variance of the data, for the variogram models used to simulate and co-simulate EC and MS. 

Omnidirectional spherical variogram EC models MS models 

Horizontal range 8 m 10 m 

Vertical range 4 m 4 m 

Nugget effect 5 % 5 % 

 

To generate the synthetic observed geophysical data, the coil configurations of a multi-receiver 

FDEM sensor was mimicked, namely a DUALEM-21S (DUALEM Inc., Milton, Canada). This 

equipment includes pairs of two different transmitter-receiver (loop-loop) orientations, the 

horizontal coplanar (HCP) and the perpendicular (PRP) configurations, and two offsets per coil 

orientation, 1 and 2 meters for HCP, and 1.1 and 2.1 meters for PRP. The true geophysical 

data was computed by applying the forward model described in the methodology section, 

which was also applied in the inversion (Hanssens et al., 2019). This approach assumes there 

is no uncertainty in the forward modelling, which is a hard assumption in complex and highly 

variable near-surface environments and neglects three-dimensional effects of the propagated 

field.  
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We ran the proposed iterative geostatistical FDEM inversion technique with six iterations and 

thirty-two realizations (i.e., Ns = 32) of EC and MS models per iteration spatially constrained 

to borehole data (Figure 2.3) and the imposed variogram models (Table 2.1). 

2.3.2 Results 

The results obtained with the proposed iterative geostatistical FDEM inversion method are 

illustrated for the 2D transect of EC and MS that intersects the four boreholes (Figure 2.3).  

 

Figure 2.3 True electrical conductivity (left) and magnetic susceptibility (right) and location of the 4 

boreholes providing conditioning data of the iterative geostatistical FDEM inversion. 

The convergence of the iterative geostatistical FDEM inversion method with respect to 

parameter model reproduction is assessed by calculating the pointwise mean models 

computed from all the realizations generated at each iteration. The pointwise mean model is 

equivalent to the maximum a posteriori model from a Bayesian inversion. The predicted and 

the true EC and MS models show similar large-scale spatial patterns, but present small-scale 

differences, which are mainly located in the deeper part of the models where the sensitivity of 

the forward model is smaller (Figure 2.4b and 2.5b).  

 

Figure 2.4 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean 

of all the EC models computed in the last iteration; c) pointwise variance of all the EC models 

computed in the first iteration; d) Pointwise variance of all the EC models computed in the last 

iteration. 
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The iterative geostatistical FDEM inversion method reproduces the true model of EC and is 

sensitive to local transitions between high and low values of EC (Figures 2.3 and 2.4b). As 

showed in the pointwise average of an ensemble of realizations, the reproduction of the true 

small-scale heterogeneities cannot be evaluated based on the pointwise average of the 

ensemble of realizations, as they are – at least partly – cancelled out by averaging. 

Nevertheless, the global values and the areas of extreme values are properly matched (Figure 

2.4b and 2.4d). 

 

Figure 2.5 a) Pointwise mean of all the MS models computed in the first iteration; b) pointwise mean 

of all the MS models computed in the last iteration; c) pointwise variance of all the MS models 

computed in the first iteration; d) Pointwise variance of all the MS models computed in the last 

iteration. 

The small-scale differences and the relationship with depth and sensitivity loss of the predicted 

solutions are also observed by calculating the pointwise variance models from the ensemble 

of EC and MS models generated at each iteration (Figures 2.4c, 2.4d, 2.5c and 2.5d). As 

expected, in the first iteration the spatial distribution of the variance is only dependent on the 

distance to the locations of the borehole data as the observed FDEM is not assimilated yet. 

The pointwise variance models of EC and MS computed from models predicted during the last 

iteration of the geostatistical inversion, shows the influence of the sensitivity provided by the 

forward model, as the higher variance values are mainly located in the deeper part of the model 

(Figure 2.4d and 2.5d). The spatial distribution of the pointwise EC variance model presents a 

reduction in in-depth sensitivity, directly dependent on the coil configurations used, although it 

shows robustness and accuracy in detecting the lowest local values of EC (Figure 2.4d). The 

predictions about MS are less sensitive at depth, with the spatial pattern of the pointwise 

variance model presenting a higher dependence on the coil configurations used (Figure 2.5d).  

The proposed iterative inversion technique is able to reproduce the true models (e.g., EC, 

Figure 2.6a) and converge to the true solution, with the residuals between the true EC model 
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and one EC realization reducing significantly from the first to the last iteration (Figure 2.6b). 

The predicted models reproduce the spatial continuity patterns of the true models (Figure 2.6c 

and 2.6d). As expected, the sill of the predicted models is slightly smaller than in the 

variograms of the EC true models as result of the increased local variability of the ensemble 

coming from the stochastic simulation.  

 

Figure 2.6 a) Histograms of the true EC and one EC model computed in the last iteration; b) 

Histogram of the residuals between one EC model computed in the first iteration and one EC model 

computed in the last iteration; c) Horizontal variogram models for EC; d) Vertical variogram models 

for EC. 

The misfit between observed and predicted IP and QP data can be assessed (Figures 2.7 and 

2.8). The figures show, for all coil configurations considered, the match between observed and 

predicted IP and QP responses increases from the first to the last iteration. The uncertainty 

envelope, as represented by the synthetic response of the ensemble of models in each 

iteration, narrows and encloses the observed IP and QP data as the iterative procedure 

advances. Although the uncertainty envelope of all coil configurations in the last iteration well 

encloses the true FDEM data, a better match is reached in QP responses and in smaller coil 

distances. This is due to a more stable signal in QP responses and a higher sensitivity to small-

scale heterogeneities at shallow depths when the coils are closest to each other, although also 

losing sensitivity at greater depths, as shown in Figures 2.7 and 2.8. Also, due to an increasing 

and partly overlapping DOI of the different coil configurations, the shallowest depths are 

covered by all the FDEM measurement signals, while the largest depths are only covered by 
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one measurement signal. As expected, the predicted QP and IP responses at the borehole 

locations are exactly reproduced as the predicted EC and MS models are locally conditioned 

by the borehole data. 

 

Figure 2.7 Comparison between observed (red line) and predicted IP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for four coil configurations (HCP 

orientation with 1 m and 2 m offset, PRP orientation with 1.1 m and 2.1 m offset). The light blue lines 

represent the minimum and maximum FDEM values predicted at a given iteration. In the left column 

the predictions at the end of the first iteration are represented and in the right column the predictions 

at the end of the last iteration are represented. Vertical dashed lines indicate the location of the 

borehole data. 
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Figure 2.8 Comparison between observed (red line) and predicted QP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for four coil configurations (HCP 

orientation with 1 m and 2 m offset, PRP orientation with 1.1 m and 2.1 m offset). The light blue lines 

represent the minimum and maximum FDEM values predicted at a given iteration. In the left column 

the predictions at the end of the first iteration are represented and in the right column the predictions 

at the end of the last iteration are represented. Vertical dashed lines indicate the location of the 

borehole data. 

2.4 Real case application 

2.4.1 Data set description 

The GEMI method was applied to a real data set obtained from an FDEM survey located at a 

site near Knowlton (Dorset, UK). The site is an arable land with a 20 cm thick rendzina soil 

cover, gentle slope, and geologically characterized by Cretaceous bedrock chalk overlain by 

Quaternary siliciclastic sand deposits. The bedrock chalk exhibits an overall background 

susceptibility of zero, while the topsoil is strongly magnetic (MS ≈ 1x10-3). The subsurface has 

a low EC (~ 7 m/Sm), with the topsoil being slightly more conductive. The subsurface is also 

known to contain several archaeological features from the Stone Age that produce strong local 

IP anomalies. The FDEM data was collected during 2016 using a DUALEM-21HS instrument, 

with an operating frequency of 9000 Hz and pairing one transmitter with three horizontal 

coplanar receiver coils, at 0.5, 1 and 2 m spacing (HCPH, HCP1 and HCP2, respectively), and 
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three perpendicularly oriented receivers at 0.6, 1.1 and 2.1 m spacing (PRPH, PRP1 and 

PRP2, respectively). Yet, due to poor signal-to-noise ratio, the smallest offsets (0.5 and 0.6 m) 

were not used in this study. The FDEM survey was performed using a motorized survey 

configuration with the instrument elevated at 0.16 m above the surface, along parallel lines 1 

m apart at a speed of ~8 km/h, and a sampling frequency of 8 Hz. A detailed description of the 

data set can be found in Delefortrie et al. (2018). 

The pre-processing of the FDEM data included: i) the correction for the spatial offsets between 

the position and sensor data, following the procedure described in Delefortrie et al. (2016); ii) 

the correction for signal drift – a relative calibration, following the procedure in Delefortrie et al. 

(2014b); and iii) an absolute calibration per coil configuration to eliminate the presence of signal 

offsets, comparing the forward modelled responses at locations where in-situ measurements 

of EC and MS were available with the measured FDEM responses. Strong correlations 

between the theoretical and measured response were found, except for the PRP2 data, which 

may be related to low signal-to-noise ratio and/or high sensitivity to surface conditions. 

Electrical conductivity and magnetic susceptibility data were collected at twelve calibration data 

locations (boreholes), with intervals measurements in depth of 5-10 cm, some reaching depths 

of 1.2 m. The magnetic susceptibility data were collected with an MS2H downhole probe 

(Bartington instruments, England) in 2.5 cm diameter gouge borehole, reaching a minimum of 

15 cm in the chalk bedrock and its expected background susceptibility (zero). The electrical 

conductivity data were collected using a UMP-1 BTim field probe (UGT) in a 5 cm diameter 

borehole. Also, at each calibration location, a lithological description was made and the depth 

of the boundary between the two formations (depth to chalk) was measured. Figure 2.9 shows 

the location of the inversion grid used in this application example. This data corresponds to 

part of the entire survey data presented in Delefortrie et al. (2018). The high in-phase 

anomalies are related to buried archaeology, and the location of the available borehole data. 

From the existing set of direct measurements, one borehole was kept out of the conditioning 

data and used exclusively as blind test to evaluate the performance of the proposed FDEM 

inversion method. 

2.4.2 Results 

Figure 2.9b shows the interpolated map of the predicted IP data, for PRP coil configuration 

with 1.1 m offset, from the pointwise mean of EC and MS models generated during the last 

iteration of the inversion procedure. The main archaeological features observed in the field 

map do match the ones predicted by the most likely model for the same coil configuration 

(Figure 2.9a), with strong local in-phase anomalies. However, this prediction is smoother due 
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to the fact of being computed from the pointwise mean models of EC and MS generated during 

the last iteration of the inversion procedure. 

 

Figure 2.9 IP maps (ppm) for PRP coil configuration with 1.1 m offset, using a 2D median filter of 0.3 

x 0.3 m and: a) the observed FDEM data; b) the synthetic FDEM data computed from the pointwise 

mean models of EC and MS of the 6th iteration. The yellow lines represent the location of the vertical 

sections (A-B and C-D) of Figures 2.9 to 2.14. White points represent the locations of the available 

borehole data (blind well in red). Coordinate system in WGS84/ UTM zone 30N, EPSG:32630 

To assess the performance of the proposed iterative geostatistical FDEM inversion technique, 

Figures 2.10 to 2.13 show the pointwise mean and variance models of the ensemble of EC 

and MS models predicted at the first and the last iterations of the proposed iterative 

geostatistical FDEM inversion. The pointwise variance models of both properties clearly show 

the influence of including the sensitivity of the forward model to the model parameters, 

increasing in depth as the sensitivity of the FDEM decreases, in line with the results achieved 

in the synthetic case application. Two distinct regions can be clearly observed, a shallower 

one with lower variance and a deeper one with higher variance where the influence of the 

recorded FDEM data is small. With the coil configurations used, the sensitivity of the inversion 

procedure is limited to approximately 2 meters depth in EC models and 1 meter depth in MS 

models. 
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Figure 2.10 Vertical sections extracted from: a) and b) pointwise mean model calculated from all 

models of EC generated during the 1st iteration; c) and d) pointwise mean model calculated from all 

models of EC generated during the 6th iteration. The vertical dashed red line represents the location 

of the blind well. 
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Figure 2.11 Vertical sections extracted from: a) and b) pointwise variance model calculated from all 

models of EC generated during the 1st iteration; c) and d) pointwise variance model calculated from 

all models of EC generated during the 6th iteration. The vertical dashed red line represents the 

location of the blind well. 

 

 

Figure 2.12 Vertical sections extracted from: a) and b) pointwise mean model calculated from all 

models of MS generated during the 1st iteration; c) and d) pointwise mean model calculated from all 

models of MS generated during the 6th iteration. The vertical dashed red line represents the location 

of the blind well. 
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Figure 2.13 Vertical sections extracted from: a) and b) pointwise variance model calculated from all 

models of EC generated during the 1st iteration; c) and d) pointwise variance model calculated from 

all models of EC generated during the 6th iteration. The vertical dashed red line represents the 

location of the blind well. 

The performance of the proposed methodology can also be assessed by the misfit between 

observed and predicted FDEM data (Figures 2.14 and 2.15) along the direction of the same 

two-dimensional profile C-D shown in Figures 9 to 13. The predicted FDEM responses were 

calculated from the ensemble of all models generated during the first and last iterations, for all 

coil configurations. The increasing convergence from iteration-to-iteration is illustrated by the 

envelope of the synthetic FDEM responses that gets narrower and closer to the observed data 

as the iterative procedure moves froward.  

Contrary to the IP data, the observed QP responses are better enclosed by the predictions 

generated during the last iteration. The better reproduction of QP is due to the higher signal-

to-noise ratio of this component of the data. This effect is a consequence of the type of FDEM 

equipment used during the data acquisition. In general, the predicted FDEM data for both the 

IP and QP signal components, and all coil configurations and offsets, do match the recorded 

field data. 
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Figure 2.14 Comparison between observed (red stars) and predicted IP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration. The blue lines represent the minimum and maximum FDEM 

values predicted at a given iteration. The left column represents the predictions at the end of the first 

iteration and the right column at the end of the last iteration. Vertical dashed lines represent the 

location of the borehole data. 

 

Figure 2.15 Comparison between observed (red stars) and predicted QP data for all models 

generated at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC 

and MS models generated at a given iteration. The blue lines represent the minimum and maximum 

FDEM values predicted at a given iteration. The left column represents the predictions at the end of 

the first iteration and the right column at the end of the last iteration. Vertical dashed lines represent 

the location of the borehole data. 
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2.5 Discussion 

The proposed iterative geostatistical FDEM inversion method predicts near-surface EC and 

MS models from survey FDEM data (i.e., simultaneously from the IP and QP components of 

the electromagnetic field). The inversion method is based on geostatistical simulation and co-

simulation as model perturbation and update techniques. Therefore, the predicted models can 

be conditioned locally to existing borehole data and a spatial continuity pattern as described 

by a variogram model. The perturbation of the model parameters at each iteration leverages 

the sensitivity analysis provided by the forward model (i.e., the assimilation of the recorded 

FDEM data accounts for the sensitivity in depth per property as provided by the forward model). 

The proposed FDEM inversion method is based on a 1D forward model. This is a limitation as 

the propagated electromagnetic field is 3D in nature. Alternative 2D or 3D forward models can 

be used if they provide a sensitivity analysis to the model parameters. However, these forward 

models would increase the computational costs of the inversion. This hard assumption is 

somehow alleviated in the proposed methodology as the model perturbation is global for the 

entire grid at once (i.e., in 2D or 3D depending on the data availability). 

The synthetic application example illustrates the potential of the proposed FDEM inversion 

method to predict a reliable near-surface model. However, this is a relatively simple example 

as the same forward model used to create the observed data was used in the inversion 

workflow. This limitation is surpassed in the real case application as the field data is three-

dimensional in nature while we use the same 1D forward model approximation in the inversion 

procedure. This computational limitation introduces uncertainty in the model prediction.  

We evaluate the predicted EC and MS models locally at the location of the “blind well” (Figure 

2.16). Despite the much shallower borehole information compared to the depth of the inversion 

model, the predicted near-surface properties do match the observed one at the last iteration. 

The match is better for MS when compared to EC, predicting properly the abrupt change of 

MS around 0.25 m depth (Figures 2.12 and 2.13), consistent with the expected values at depth 

of magnetic susceptibility for rendzina soil cover and the bedrock chalk. Overall, EC models 

confirm the low conductivity of the subsurface and the topsoil, with slight differences between 

both (Figures 2.10 and 2.11). Figure 2.16 also clearly shows the effect of the DOI for both 

properties. Below 0.5 m, for MS, and 1 m, for EC, the predictions at iteration 6 are more variable 

than above these depths. Finally, Figure 2.17 shows a comparison of the results of the sensor’s 

default output for apparent EC (ECa), between the interpolation of the observed QP 

component using the low-induction-number (LIN) approximation (Delefortrie et al., 2018), with 

the same LIN ECa interpolation using the best-fit synthetic QP component computed during 
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the inversion procedure. Both models are similar concerning the range of predicted values and 

large-scale spatial features. However, the predicted LIN ECa model from the synthetic data 

has more small-scale variability, which is originated by the stochastic nature of the proposed 

iterative geostatistical inversion method, resulting in an increased sensitivity to the spatial 

structure variations. 

 
Figure 2.16 True and predicted values of EC and MS along the blind test for: a) EC during the 1st 

iteration; b) EC during the 6th iteration; c) MS during the 1st iteration; d) MS during the 6th iteration. 

 

 

Figure 2.17 LIN ECa maps (mS/m) of the HCP coil configuration with 2 m offset using a median filter 

of 0.3 x 0.3 m from a) the observed data b) the synthetic data predicted in the iteration 6th. 
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2.6 Conclusion  

This Chapter introduces an iterative geostatistical FDEM inversion method able to predict the 

spatial distribution of EC and MS simultaneously in complex and heterogeneous subsurface 

environments. It represents an alternative method in quantitative near-surface modelling using 

FDEM survey data and can be universally applied to characterize near-surface deposits of 

different types and nature, which is relevant to a wide variety of applications.  

The FDEM inversion methodology was first validated using a developed three-dimensional 

synthetic data set rendering realistic spatial distributions of EC and MS and then applied to a 

real data set from a FDEM survey at a site containing several archaeological features that 

produce strong local in-phase anomalies. In both application examples, the pointwise mean 

and variance models were computed from geostatistical realizations generated during the first 

and last iterations, demonstrating that the predicted models reproduce the measured EC and 

MS. Also, the proposed methodology reproduces exactly the histograms retrieved from the 

borehole data and tends to reproduce the variogram models imposed during the stochastic 

sequential simulation and co-simulation of EC and MS. 

The FDEM measurement responses derived from the ensemble of EC and MS models 

predicted by the iterative FDEM inversion method were able to enclose the true FDEM data in 

the synthetic case application, and in the real case application the methodology well 

reproduces the FDEM observed data from the coil configurations with higher signal-to-noise 

ratio. This methodology can assess the uncertainty of the FDEM responses as well the 

uncertainty of the posterior distributions of EC and MS.  

The proposed inversion relies on a one-dimensional forward approximation but could be 

extended to more complex physical models from the imposed spatial structure. A critical aspect 

for the success of the proposed inversion method is the availability of calibration data, in the 

form of borehole observations and/or in-situ measurements, and their spatial distribution within 

the area of interest. The accuracy of the inversion results might be affected if only a limited 

number of calibration data are available, correspondingly leading to large uncertainties in the 

predictions. In real applications, this sometimes can be overcome by accounting for direct 

measurements from nearby areas close to the area under investigation. 
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The spatial distribution of the physical properties of the first meters beneath the 

earth’s surface is often complex due to its highly dynamic nature and small-scale 

heterogeneities resulting from natural and anthropogenic processes. Therefore, 

obtaining numerical 3D models that accurately describe the spatial distribution of 

these properties is often challenging yet essential for different fields such as 

environmental assessment and remediation, geoarchaeological conservation, and 

precision agriculture. Frequency-domain electromagnetic (FDEM) induction 

methods have proven their potential to image these properties in high (spatial) 

detail because FDEM measurements are sensitive to two key soil properties: 

electrical conductivity and magnetic susceptibility. Predicting subsurface 

properties from FDEM data requires solving an ill-posed and nonlinear inverse 

problem with multiple solutions. Recently, there has been a rapid growth of FDEM 

inversion methods, which may be broadly divided into probabilistic and 

deterministic methods. This chapter presents the comparison between two 

stochastic FDEM inversion approaches: the Kalman ensemble generator (KEG) 

and the iterative geostatistical FDEM inversion presented in Chapter 2. Both 

methods are applied to a synthetic data set with spatially heterogeneous physical 

properties of interest, mimicking a real landfill mining site. The predicted models 

are compared with the reference models in terms of histogram and variogram 

models’ reproduction and in their ability to quantify spatial uncertainty. The results 

indicate the ability of both methods to predict the reference values. Although the 

KEG is computationally efficient, it struggles to reproduce the extreme values. In 

contrast, the geostatistical inversion approach ensures the reproduction of the 

imposed histograms and variogram models in the predicted models. As the prior 

information is included in both inversion methods in different ways, the pointwise 

variance models computed from all of the posterior models have different 

information. The synthetic data set is available to the community, so it can be used 

as a benchmark for other FDEM inversion methods.  

3.1 Introduction 

The near surface is a complex and highly dynamic region of the subsurface due to intense 

natural and anthropogenic activities. These dynamics result in complex systems, which often 

are characterized by physical properties with small-scale heterogeneity. This complexity can 

make sparse and discrete direct observations (e.g., boreholes) insufficient to provide sufficient 

information about the spatial distribution of these properties in the horizontal direction, causing 
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a simple interpolation of the borehole data to be unsuitable to reproduce the natural spatial 

variability of these systems. 

Contrary to direct observations, which are always scarce, several geophysical survey methods 

can be used to acquire indirect, and virtually continuous, measurements of the physical 

properties of the near surface. Particularly, frequency-domain electromagnetic (FDEM) 

induction methods have been found to be some of the most efficient methods to reach this 

objective due to their relatively low cost, operational flexibility, and sensitivity to two key 

subsurface properties: electrical conductivity (EC) and magnetic susceptibility (MS). Due to 

these features, FDEM induction methods have been used for, for example, environmental 

assessment and remediation (Van De Vijver et al., 2015; Dumont et al., 2017), soil 

characterization (e.g., Haber et al., 2004; Saey et al., 2015), groundwater characterization 

(Huang et al., 2017; Rejiba et al., 2018), archaeological prospection (e.g., Bongiovanni et al., 

2008; De Smedt et al., 2011), and agricultural application (e.g., Pedrera-Parrilla et al., 2016; 

Badewa et al., 2018). 

Due to the indirect and band-limited nature of the FDEM data, predicting the spatial distribution 

of the near-surface EC and MS from FDEM data, considering components of the signal — in 

phase (IP) and quadrature phase (QP) — is an ill-posed and non-linear inverse problem with 

multiple solutions. Stochastic frameworks partially address the previously mentioned 

challenges of this inversion problem as such settings enable accounting for no uniqueness 

and nonlinearity. For this reason, and the increase in available computational resources, the 

number of publications concerning statistical-based inversion methods of FDEM data has been 

growing in recent years (e.g., Minsley, 2011; Bobe et al., 2019). The FDEM inversion problem 

can be mathematically summarized by Eq. 2.1. 

This Chapter present the results obtained by applying two distinct stochastic FDEM inversion 

methods to a highly spatially variable 3D synthetic data set composed of the reference EC and 

MS models, a set of synthetic borehole data extracted from the 3D models, and the theoretical 

FDEM response — IP and QP components — calculated from the EC and MS models. The 

FDEM responses calculated from the EC and MS models represent the reference FDEM 

measurement data mimicking a ground-based survey. The two FDEM inversion methods 

applied are based on (1) the Kalman ensemble generator (KEG; Nowak, 2009; Bobe et al., 

2019) and (2) the GEMI method presented in Chapter 2. 

The KEG is a Monte Carlo implementation of a Bayesian parameter estimation problem for 

Gaussian probability distributions, where the covariance matrices are replaced by sample 

covariance, avoiding a linearization of the forward equation (Zhou et al., 2011). The KEG uses 

the update step of the ensemble Kalman filter (EnKf) (Evensen, 2003), where the KEG update 
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is limited to the parameter space. For nonlinear inverse problems, the KEG gives a fast, first- 

order (Gaussian) approximation to the FDEM inverse solution (Bobe et al., 2019). 

The GEMI method, as expose in Chapter 2, is an iterative FDEM inversion procedure based 

on the principles of global iterative geostatistical seismic inversion methods (Azevedo and 

Soares, 2017), which allows simultaneous prediction of EC and MS from FDEM data. This 

method has two underlying key ideas: (1) stochastic sequential simulation and co-simulation 

are used for global model parameter space perturbation and (2) the convergence is ensured 

by a global stochastic optimizer driven simultaneously by the misfit between reference and 

synthetic FDEM data and the predicted sensitivity of EC and MS. Both inversion methods use 

the same 1D forward model (Hanssens et al., 2019) as part of the inversion procedure to 

calculate the synthetic FDEM response for the model realizations. 

This Chapter evaluate and compare quantitatively the results of both methods in terms of 

deviations from the reference model, reproduction of the global statistics and the variogram 

model computed from the reference EC and MS models in the predicted EC and MS models, 

and uncertainty assessment as represented by the pointwise variance of the posterior 

ensemble. 

3.2 Methodologies 

This section describes both stochastic FDEM inversion methods, providing a detailed 

description of the main principles of the KEG (Bobe et al., 2019). A detailed description of the 

GEMI method can be found in section 2.2. A detailed description of the forward model used by 

both methods (Hanssens et al., 2019) can be found in section 2.2.2. 

3.2.1 Forward response and sensitivity modelling 

The synthetic FDEM responses – IP and QP – are calculated in each method using a 1D 

nonlinear forward model that allows mapping the near-surface petrophysical properties (i.e., 

EC and MS) into the data domain, since IP and QP responses pertain to both MS and EC 

(Hanssens et al., 2019). This forward model replicates the components of the electromagnetic 

field as acquired by a loop-loop system characterized by one transmitter coil and one or more 

receiver coils. The primary field is computed by assuming an alternating current in the 

transmitter coil, while the secondary field is calculated based on induction currents in relation 

to the primary field.  

The theoretical IP and QP responses are calculated per transmitter-receiver coil configuration 

located above a l-layered model by using Hankel functions, which are numerically calculated 
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by means of a Guptasarma and Singh digital filter (Guptasarma and Singh, 1997), to determine 

a superposition of Bessel functions of the zeroth and/or first order that model the EM 

responses. For low-frequency applications, a quasi-static approximation can be applied, so 

dielectric permittivity is negligible. This assumption results in a signal mostly depending on the 

spatial distribution of the subsurface EC and MS and on a lesser extent the characteristics of 

the acquisition equipment.  

Along with the FDEM response, the GEMI method computes the sensitivity of the forward 

model with respect to changes of EC and MS at a specific layer l of the layered half-space. In 

contrast to the KEG, the GEMI methodology explores this result when doing the stochastic 

model update at the end of each iteration of the inversion procedure. However, this is a time-

consuming calculation with an impact on the performance of the geostatistical inversion. This 

bottleneck can be mitigated by parallelizing the application of the forward model as this is a 1D 

approximation of the true three-dimensional field propagation or by making use of methods 

computing approximate sensitivities for the FDEM forward problem (Farquharson and 

Oldenburg, 1996; da Cruz Luz et al., 2013). A 1D forward model approximates the true 

subsurface field propagation that might not be suitable for geological settings highly affected 

by three-dimensional structure. A detailed mathematical description of this forward model is 

available in Hanssens et al. (2019) and in section 2.2.2. 

3.2.2 The Kalman ensemble generator 

The KEG is a variant of the widely applied EnKf (Evensen, 2003). The EnKf was introduced as 

an efficient Monte Carlo implementation of the Kalman filter (Kalman, 1960), where the 

covariance equations of the Kalman filter update are replaced by sample covariance derived 

from the Monte Carlo ensemble. The EnKF is based on the assumption that all probability 

density functions (PDFs) involved in the update are Gaussian but allow the application to 

nonlinear inversion problems (Zhou et al., 2011). Initially used for state estimation, the EnKf 

was soon applied to the joint estimation of states and time-invariant physical parameter 

updates (e.g., Hendricks Franssen and Kinzelbach, 2008). The EnKf update equation applied 

to pure parameter estimation problems was introduced by Nowak (2009) and called KEG 

because the filter function of the EnKf was ignored. 

Using the KEG, a measurement response is simulated as follows: 

𝒅𝑠𝑖𝑚
𝑖 = 𝑔(𝒎𝑝𝑟𝑖𝑜𝑟

𝑖 ) + 𝝐𝑒𝑟𝑟,                       𝑖 ∈ {1, … , 𝑛𝑒𝑛𝑠},   (3.1) 

where 𝝐𝑒𝑟𝑟 refers to the measurement error and approximations of the true physical 

phenomena made during data processing and modelling, 𝑛𝑒𝑛𝑠 is the size of the ensemble, and 
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𝒎𝑖 and 𝒅𝑖 are the realizations of the Gaussian prior PDF and Gaussian observed data PDF, 

respectively. The KEG update is given by (Evensen, 2003): 

𝒎̃𝑖 = 𝒎𝑝𝑟𝑖𝑜𝑟
𝑖 + 𝑪𝑚𝑔

𝑒 (𝑪𝑔𝑔
𝑒 + 𝑪𝐷

𝑒 )−1 ∙ (𝒅𝑖 − 𝑔(𝒎𝑝𝑟𝑖𝑜𝑟
𝑖 )),  (3.2) 

for 𝑖 ∈ {1, … , 𝑛𝑒𝑛𝑠}; where 𝑪𝐷
𝑒  is the covariance matrix of random observation errors. The 

covariance matrices 𝑪𝑚𝑔
𝑒 ∈ ℝ𝑛𝑝𝑎𝑟×𝑛𝑜𝑏𝑠 and 𝑪𝑔𝑔

𝑒 ∈ ℝ𝑛𝑜𝑏𝑠×𝑛𝑜𝑏𝑠 are derived from the prior 

ensemble captured by a matrix 𝐴 ∈ ℝ𝑛𝑝𝑎𝑟×𝑛𝑒𝑛𝑠 and the forward response ensemble captured 

by a matrix 𝐺 ∈ ℝ𝑛𝑜𝑏𝑠×𝑛𝑒𝑛𝑠, with 𝑛𝑜𝑏𝑠 being the number of observations and 𝑛𝑝𝑎𝑟 being the 

number of model parameters. Furthermore, the matrices 𝐴, and 𝐶 , are defined as the mean-

corrected versions of the matrices 𝐴 and 𝐺, where 𝐴, is derived using the matrix of ensemble 

means:  

𝐴̅ = 𝐴1𝑛𝑒𝑛𝑠
,      (3.3) 

where 1𝑛𝑒𝑛𝑠
ℝ(𝑛𝑒𝑛𝑠×𝑛𝑒𝑛𝑠) is the matrix where all elements equal 1/𝑛𝑒𝑛𝑠 (Evensen, 2003). Using 

the matrix of ensemble means, the mean-corrected matrix is derived by computing: 

𝐴, = 𝐴 − 𝐴̅.      (3.4) 

Analogously, matrix 𝐺 , is derived from matrix 𝐺. Using the previously defined matrices, the 

computation of the covariance matrices is given by: 

𝐶𝑚𝑔
𝑒 = 𝐴,𝐺 ,𝑇 1

𝑛𝑒𝑛𝑠−1
 and 𝐶𝑔𝑔

𝑒 = 𝐺 ,𝐺 ,𝑇 1

𝑛𝑒𝑛𝑠−1
 .   (3.5) 

An efficient numerical analysis scheme for the computation of the update is given by Nowak 

(2009) and outlined in detail for the inversion of FDEM data in Bobe et al. (2019). In contrast 

to the strict 1D formulation given in Bobe et al. (2019), in this work (Figure 3.1) the prior 

covariance matrix is defined by 2D correlation functions (i.e., in the vertical and horizontal 

directions) as defined by a variogram model manually fitted to experimental variograms 

calculated from the borehole data. The borehole data are considered to be hard data without 

uncertainty. This is an approach similar to geostatistical simulation (Deutsch and Journel, 

1998). The variogram models (i.e., spatial covariance matrices) used in this work are shown 

in section 3.3. 
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Figure 3.1 Schematic representation of the noniterative constrained KEG method. 

3.2.3 GEMI inversion 

The GEMI method (Figure 3.2) is an iterative inversion approach, which uses geostatistical 

simulation, namely, direct sequential simulation and co-simulation (Soares, 2001), to perturb 

the model parameter space, and uses the existing direct in situ measurements (e.g., data from 

borehole logs) as hard data without uncertainty. A variogram model is imposed during the 

geostatistical simulation to describe the expected spatial continuity pattern of EC and MS in 

three dimensions (Shamsipour et al., 2012). This variogram model is fitted to the experimental 

variogram calculated from the hard data but might be adjusted according to the expert 

knowledge of the expected geologic background. In all realizations generated during the 

iterative procedure, the hard data are reproduced exactly at their location (i.e., no uncertainty 

is considered at the locations of the direct observations) as well as their distributions (i.e., the 

histogram) and the spatial continuity pattern as defined by the variogram model. A detailed 

description of the GEMI method can be found in section 2.2. 
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Figure 3.2 Simplified schematic representation of the iterative GEMI method. 

3.3 Application 

3.3.1 Data set description 

A realistic 3D synthetic data set based on the synthetic data set described in section 2.3.1, 

was used as a benchmark between alternative FDEM inversion methods. Although this data 

set was modeled with some of the geologic samples used to develop the synthetic data set 

from section 2.3.1, and collected at the same mine tailing, the data set presented in this 

Chapter was created with the goal of mimicking a three-dimensional larger mine tailing, with 

more spatial continuity of the properties of interest. This approach enabled to test the 

robustness of the GEMI method, described in Chapter 2, when applied to different subsurface 

environments, in scale and heterogeneity. 

Direct measurements of porosity and particle density were used to generate a 3D synthetic 

porosity subsurface model using stochastic sequential simulation (Deutsch and Journel, 1998) 

and imposing an omnidirectional spherical variogram model in the horizontal direction with a 

range of 10 m and a range of 1 m in the vertical direction and a nugget effect of 20% of the 

total variance. We modeled these variogram models using exclusively the location of the 

samples collected at the mine tailing. The model has a dimension of 150 m × 200 m × 4 m 

(i.e., length, width, and depth) with a cell size of 0.5 m × 0.5 m × 0.1 m, respectively. To ensure 
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a realistic relationship between properties, particle density and water content models were 

generated using stochastic sequential co-simulation (Deutsch and Journel, 1998) conditioned 

to the porosity model and imposing an omnidirectional spherical variogram model with a 

horizontal range of 10 m and a vertical range of 1 m and a nugget effect of 20% of the total 

variance for the particle density and an omnidirectional spherical variogram model with a 

horizontal range of 16 m and a vertical range of 2 m and a nugget effect of 10% of the total 

variance for the water content. 

EC and MS models were then derived from these 3D physical property models and the Archie 

equation (Archie, 1942) and imposing an omnidirectional spherical variogram model with a 

horizontal range of 20 m and a vertical range of 4 m and a nugget effect of 10% of the total 

variance for the MS models. 

From the resulting 3D models, were selected nine locations to represent synthetic boreholes 

that were used as in situ data conditioning the inversion. The corresponding observed FDEM 

data were obtained using the same forward model (Hanssens et al., 2019) as in the inversion 

procedures described in section 2.2.2, where the 1D forward model responses were stitched 

for forming the FDEM measurement transect following the borehole locations (Figure 3.3). The 

synthetic FDEM values were generated replicating one of the most common sensors for these 

types of near-surface surveys, namely, the DUALEM-421S (DUALEM Inc., Milton, Canada), 

considering two loop-loop coil orientations, a horizontal coplanar (HCP) and a perpendicular 

one (PRP), with the normal three offsets per coil orientation for this equipment, 1, 2, and 4 m 

for HCP and 1.1, 2.1, and 4.1 m for PRP, plus an extra offset per coil orientation, 10 m for HCP 

and 10.1 m for PRP, ensuring a theoretically larger depth of investigation (DOI). 

This data set is considered as the reference to assess the performance of the GEMI and KEG 

inversion methods. The data set is available freely (http://doi.org/10.5281/zenodo.5116420) 

and can be used to assess the advantages and disadvantages of different methods. 

For illustration purposes, the comparison between the two probabilistic inversion methods is 

shown for a 2D profile extracted from the true 3D model. The selected 2D profile was aligned 

with the nine boreholes where EC and MS logs were extracted (Figure 3.3). This geometry 

represents an ideal scenario in which the direct subsurface measurements are regularly 

spaced along the geophysical profile. 

http://doi.org/10.5281/zenodo.5116420
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Figure 3.3 Cross sections extracted from the reference models of (a) EC and (b) MS. The black dots 

represent the nine wells. (c) Location of the nine wells in the EC model map. 

3.3.2 Inversion parametrization 

The GEMI ran with six iterations and generated sets of 32 realizations of EC and MS per 

iteration. EC models were simulated and cosimulated imposing an omnidirectional spherical 

variogram model with a horizontal range of 10 m and a vertical range of 4 m and a nugget 

effect of 20% of the total variance of the data. MS models were simulated and cosimulated 

imposing an omnidirectional spherical variogram model in the horizontal direction with a range 

of 40 m, a vertical range of 30 m, and a nugget effect of 10% of the total variance of the data. 

The variogram models were calculated relying exclusively on the borehole data set to mimic a 

real application scenario (Table 3.1). Consequently, these variogram models are not the same 

as those used in the true model generation. In addition to the borehole data, no other spatial 

constraint was considered in the geostatistical inversion. 

Table 3.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total 

variance of the data, for the variogram models used to simulate and co-simulate EC and MS. 

Omnidirectional spherical variogram EC models MS models 

Horizontal range 10 m 40 m 

Vertical range 4 m 30 m 

Nugget effect 20 % 10 % 

 

The KEG used a prior ensemble with 500 models of EC and MS. This ensemble was generated 

using direct sequential simulation as the model perturbation technique of GEMI. The same 

parameterization in terms of the number of experimental data and variogram models used to 

constrain the GEMI was considered to create this ensemble of realizations. These models are 

equivalent to those generated in the first iteration of the GEMI. They reproduce the borehole 
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data at the corresponding locations and the variogram models imposed during the model 

simulation. In this way, the prior information of both inversion methods is the same. However, 

although the GEMI is an iterative procedure, the KEG infers the posterior distribution in a 

single-step update. A cross section extracted from the pointwise average EC and MS models 

computed from the prior ensemble is shown in Figure 3.4. All realizations match the true 

borehole data. The influence of these data in the horizontal direction is dependent on the 

horizontal variogram model. For distances greater than the horizontal range, the simulated 

values tend to be the mean value of the observed data.  

 

Figure 3.4 Cross sections extracted from the pointwise average model of the prior ensemble for (a) 

EC and (b) MS. 

The same effect is observed from the pointwise variance models computed from this ensemble 

of models. As the stochastic sequential simulations are locally constrained by the borehole 

data, the variance is null at these locations (Figure 3.5). The synthetic response of the prior 

ensemble used in both inversion methods is shown in Figure 3.6. As the prior realizations were 

generated with geostatistical simulation, and we do not consider noise in this synthetic 

application, the synthetic responses calculated from the prior models do exactly reproduce the 

true measurement responses for the borehole locations. For other locations, the synthetic 

response of the pointwise average EC and MS models fails to reproduce the observed data. 
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Figure 3.5 Cross sections from the variance of the prior ensemble for (a) EC and (b) MS. 

 

Figure 3.6 Prior synthetic IP and QP data for the 2 m HCP coil configuration, per model realization 

and the mean of the model realizations (grey and blue, respectively), compared with reference IP 

and QP data (red). 

3.3.3 Results 

The mismatch between the observed and predicted IP and QP data can be assessed in 

Figures 3.7 and 3.8, along the same 2D profile shown in Figure 3.3. For the sake of simplicity, 

is shown the results obtained for the 2 m HCP coil configuration. For the other coil 

configurations, similar results regarding the convergency of the data were obtained. Figures 
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3.7 and 3.8 show the synthetic response obtained from all the models of the posterior 

distribution predicted with the KEG and the ensemble of models cosimulated in the last iteration 

of the GEMI. 

 

Figure 3.7 Synthetic IP and QP data for the 2 m HCP coil configuration, per model realization and 

the mean of the model realizations (grey and blue, respectively) calculated for the KEG, compared 

with reference IP and QP data (red). 

 

Figure 3.8 Synthetic IP and QP data for the 2 m HCP coil configuration, per model realization and 

the mean of the model realizations (grey and blue, respectively) calculated for the GEMI method, 

compared with reference IP and QP data (red). 
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The IP and QP responses predicted by the GEMI have a closer match than those predicted 

with the KEG concerning two aspects: (1) the predicted IP and QP calculated from the 

pointwise average model of EC and MS and (2) the uncertainty envelope, as represented by 

the synthetic response of all the realizations sampled from the posterior distributions (i.e., the 

grey lines in Figures 3.7 and 3.8), of the GEMI is tighter and better encapsulates the observed 

IP and QP data. Figure 3.9 summarizes the match between the true and predicted data, which 

supports the interpretation provided in (1). 

 

Figure 3.9 Biplots between the reference IP and QP data and the synthetic IP and QP data for the 2 

m HCP coil configuration, calculated from the mean of the model realizations, for each method. 

To compare the performance of the two methods with respect to parameter model 

reproduction, Figure 3.10 shows the posterior histograms of EC and MS of a single realization 

for the two methods. Both methods sufficiently reproduce the overall shape of the borehole 

data histograms. However, although the GEMI reproduces exactly the minimum and maximum 

values of the true distribution, the KEG predicts values not observed in the direct 

measurements and is characterized by longer tails in the predicted distributions. This 

difference is expected as by definition the stochastic sequential simulation method applied by 

GEMI uses a model perturbation technique which ensures the exact reproduction of extreme 

values. In addition, due to the Gaussian assumption of the KEG, the retrieved histograms from 

the posterior models are more Gaussian than those obtained from the GEMI. 

Figures 3.11 and 3.12 present the comparison between the predicted models of both inversion 

methods using the posterior distribution of EC and MS from one single realization of each 

inversion method, which remains the same throughout the assessing analysis. Both models 

predict similar spatial patterns at the large scale for EC and MS but exhibit differences at the 

small scale and in the deeper part of the model. Consistently with what was observed for the 
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comparison of the histograms (Figure 3.10), the KEG predicts more pronounced local 

extremes and the GEMI predicts more accurately local distributions and spatial pattern.  

 

Figure 3.10 Comparison between the histograms of the reference EC and a single realization 

generated by (a) the KEG and (c) the GEMI. Comparison between the histograms of the reference 

MS and a single realization generated by (b) the KEG and (d) the GEMI. 

 

Figure 3.11 Vertical 2D section extracted from a realization of the posterior distribution obtained by 

the KEG for (a) EC and (b) MS. 
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Figure 3.12 Vertical 2D section extracted from a realization of the posterior distribution obtained by 

the GEMI for (a) EC and (b) MS. 

As an absolute comparison between single realizations is difficult and there is no equivalency 

between realizations sampled from the GEMI and the KEG, Figures 3.13 and 3.14 presents 

the pointwise average models computed from all the realizations from the posterior distribution 

predicted by both methods, with relatively large differences between the pointwise average 

models.  

 

Figure 3.13 Two-dimensional mean model of (a) EC and (b) MS using the KEG method. 
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Figure 3.14 Two-dimensional mean model of (a) EC and (b) MS using the GEMI method. 

The differences are further explored by comparing the residuals (i.e., the absolute differences 

between a single realization or the pointwise mean model of the ensemble realizations on the 

one hand and the reference EC and MS models on the other) in terms of their spatial 

distribution over the selected profile (Figures 3.15, 3.16, 3.17, and 3.18) and their global 

distribution based on the histogram (Figure 3.19).  

 

Figure 3.15 Two-dimensional difference between one model computed from the posterior 

realizations and the reference model of EC using (a) KEG and (b) GEMI. 



Chapter 3 

56 
 

 

Figure 3.16 Two-dimensional difference between the mean model computed from the posterior 

realizations and the reference model of EC using (a) KEG and (b) GEMI. 

 

Figure 3.17 Two-dimensional difference between one model computed from the posterior 

realizations and the reference model of MS using (a) KEG and (b) GEMI. 

In addition, Figures 3.20 and 3.21 show the biplots between the reference EC and MS models 

and the simulated EC and MS models. The profiles of the residuals of EC show a spatial 

structure in both methods, with low residuals where the reference model has low values and 

higher residuals where high reference values of EC occur (Figures 3.15 and 3.16). In line with 

the above, the histograms of the residuals EC for a single model realization are similar for both 
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methods but with the KEG predicting larger extremes (which can be larger than the maxima in 

the reference models). This effect is illustrated in the biplots between the reference EC model 

and the predicted EC models (Figure 3.20), and a tail of high residual values (Figure 3.19).  

 

Figure 3.18 Two-dimensional difference between the mean model computed from the posterior 

realizations and the reference model of MS using (a) KEG and (b) GEMI. 

 

Figure 3.19 Comparison between the histograms of the residuals between one model computed from 

the posterior realizations and the reference model of (a) EC and (b) MS, and the residuals between 

the mean model computed from the posterior realizations and the reference model of (c) EC and (d) 

MS, using the KEG and GEMI. 
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Figure 3.20 Biplots between the reference model of EC and (a) one model and (b) the mean model 

computed from the posterior realizations, from each method. 

 

Figure 3.21 Biplots between the reference model of MS and (a) one model and (b) the mean model 

computed from the posterior realizations, from each method. 

The profiles of the residuals of MS realizations of both methods show a low spatial structure 

correlation when comparing with the reference MS model (Figures 3.17 and 3.18), and the 

histograms and the biplots show similarities between KEG and GEMI, with the KEG predicting 

larger extremes (Figures 3.19 and 3.21), yet the distribution has a narrower peak for KEG, so 

small residuals are more frequently occurring than in the distribution obtained for the GEMI, 

but KEG again exhibits a tail of high residual values visible in the histograms and the biplots 

(Figures 3.19 and 3.21). These differences are due to the nature of the stochastic update of 

both inversion methods; because the KEG uses Gaussian statistics, the probability for EC and 

MS values beyond the prior ensemble values derived from the boreholes data is never zero. 

When comparing the mean of the ensemble residuals (Figures 3.16 and 3.18), i.e., absolute 
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differences between the mean models (Figures 3.13 and 3.14) and the reference EC and MS 

models (Figure 3.3), the same spatial structure in both methods is shown but the mean of the 

500 realizations models of KEG reproduce better the reference model of EC and exhibit large 

residuals less frequently when compared with GEMI, which can derive from further exploration 

by GEMI of the model parameter space. However, it should be mentioned here that for the 

GEMI method the mean residuals are computed based on 32 model realizations only. 

Regarding the residuals of the average MS models, the same conclusion arises as that 

reached when only one MS realization of both methods is used, as described previously. 

3.4 Discussion 

Both stochastic inversion methods use computed FDEM signals to simultaneously predict the 

spatial distribution of the subsurface EC and MS models. The GEMI method does not assume 

any parametric distribution of the properties of interest and uses stochastic sequential 

simulation and co-simulation in a convergent and iterative procedure. However, it requires the 

existence of borehole log data of EC and MS, which might not always be available. The KEG 

method uses the update step of the EnKf to update a prior ensemble assimilating the 

geophysical measurement data. 

The synthetic FDEM data generated from the inversion results encapsulate the reference 

observed FDEM data for both methods, but the GEMI method more closely resembles the 

reference observed QP and IP data along the cross section when comparing with the synthetic 

FDEM data calculated from the model realizations. For the GEMI method, 6.25% of the 

reference IP data and 21.75% of the QP data along the cross section were outside the range 

of the computed synthetic data, whereas for the KEG method we found 27.5% of the IP data 

and 24.75% of the QP data to be outside (Figures 3.7 and 3.8). Both methods predict EC and 

MS models that match the main spatial structures of the reference ones (Figures 3.11 and 

3.12). However, as already mentioned previously, there are differences between the spatial 

continuity pattern of the predicted models with both methods. These differences can be 

assessed by modelling the horizontal and vertical variograms from a single realization sampled 

from the predicted posterior distribution and comparing them with the true variogram models 

and those obtained from the borehole data exclusively (Figures 3.22 and 3.23). 

The set of borehole data for EC captures the spatial continuity pattern of the reference EC 

model in the horizontal and vertical directions (Figure 3.22). The best-fit inverted model 

predicted with GEMI exhibits a similar spatial behavior in terms of variogram range, sill, and 

nugget effect when compared with the reference models for both directions. This reproduction 

is expected as by definition stochastic sequential simulation and co-simulation methods, which 
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are used as model perturbation and stochastic update, do ensure the reproduction of the 

variogram models imposed. However, to ensure the match with the observed FDEM data, the 

iterative inversion procedure does need to perturb the imposed variogram range in the vertical 

direction. This results in the range of the vertical variogram obtained from the best-fit inverted 

model being smaller than the true one. On the other hand, the variogram models obtained from 

the inverted models with the KEG have higher sill (i.e., variance), shorter ranges, and larger 

variability at the small scale as represented by the nugget effect. The higher sill and nugget 

effect are consistent with the occurrence of larger extremes as discussed previously (Figures 

3.10 and 3.19). This behavior is expected because the KEG update at a given location is 

independent of the updated values at the neighboring locations. The larger nugget effect and 

smaller variogram ranges result from this update procedure, which does not account for spatial 

correlation. In addition, unlike the more traditional inversion Bayesian update methodologies, 

which are done on an average model (i.e., a priori model), this KEG update is done on 

simulated realizations, which further enhances the nugget effect of resulting models. 

 

Figure 3.22 (a) Horizontal and (b) vertical variogram models for EC calculated from the true models, 

the borehole data and one realization from the posterior ensemble predicted with KEG and with 

GEMI. 

Contrary to EC, for MS the sparse borehole data set is not able to reproduce the true variogram 

model of the reference 3D models of EC and MS in the horizontal and vertical directions (Figure 

3.23). This behavior represents an obstacle for the GEMI because we use the variogram model 

retrieved from the borehole data in the stochastic sequential simulation and co-simulation of 

MS. If the a priori data are not similar to the reference model, this inversion method will struggle 

to predict the true spatial pattern. Azevedo and Demyanov (2019) propose a stochastic 

optimization approach to account for the uncertainty in variogram models. Figures 3.19, 3.20, 
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and 3.21 illustrate the potential of the KEG to move away from the spatial continuity pattern of 

the a priori ensemble of models toward the true one, which indicates that the KEG appears to 

be more flexible in the presence of non-exact prior information. 

 

Figure 3.23 (a) Horizontal and (b) vertical variogram models for MS calculated from the true models, 

the borehole data and one realization from the posterior ensemble predicted with KEG and with 

GEMI. 

The synthetic application example shown in this Chapter uses a large number of boreholes 

with a regular and small spacing relative to the range of the underlying variogram. This setup 

makes the simulated models (i.e., the a priori ensemble of models) very dependent on the 

conditioning borehole data. This is a very appropriate situation for updating by KEG because 

the simulated models are already close to the reference values. Reducing the number of 

boreholes might result in considerable differences by both methods considered herein. 

In addition, the same forward model was used to generate the reference FDEM data and within 

the inversion procedures. This assumption implies that at the borehole locations there is no 

uncertainty. In a real case study, when one applies the KEG update of a value at the borehole 

location, the IP and QP values, obtained by the forward model, are not equal to the real values 

at borehole locations. Hence, in real applications, the updated EC and MS values of the final 

models will not honor the experimental values. 

Finally, is presented the comparison of the spatial uncertainty assessed with both methods by 

computing the pointwise variance of the ensemble of models of EC and MS predicted with the 

KEG and the GEMI (Figures 3.24 and 3.25). Both methods honor exactly the borehole data, 

illustrated with null variance at these locations. However, the spatial behavior of both methods 

is quite different. For EC, in the models obtained with the GEMI, there is a clear influence of 
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the depth of sensitivity (𝑠𝑒𝑛𝑠𝐸𝐶), whereas the predictions with the KEG have smaller variance 

in the first half-meter (Figure 3.24).  

 

Figure 3.24 Pointwise variance model of EC obtained from the predicted models with (a) KEG and 

(b) GEMI. 

 

Figure 3.25 Pointwise variance model of MS obtained from the predicted models with (a) KEG and 

(b) GEMI. 
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For KEG, there seems to be a more pronounced proportionality effect, i.e., higher variance 

associated with higher predicted values of EC. This behavior can be explained by visual 

inspection of the prior model. Except in very close vicinity of the boreholes, the prior model’s 

mean and variance EC are largely uniform. For MS, the prior model’s mean is less uniform 

because larger correlation lengths are defined a priori and extreme values from the virtual 

boreholes have a larger influence in the prior model mean. For the uncertainty associated with 

the predicted MS, the KEG has a clear depth dependency, whereas the spatial uncertainty 

assessed with the GEMI appears to be unstructured and uninformative (Figure 3.25). 

Regarding computational time performance, the KEG inversion method is more efficient 

because it is a single-step update method, and there is no need to compute the sensitivity for 

any of the ensemble’s subsurface prior model realizations. The KEG typically works with larger 

ensemble sizes sampled from a prior model (500 realizations) as compared with the relatively 

low number of model realizations (32 realizations) considered in the individual iterations of the 

GEMI. However, the GEMI updates do take sensitivity into account, involving additional 

forward model computations necessary for the sensitivity derivation. 

The GEMI inversion was performed on a workstation with Intel Core i7 3.40 GHz CPU and 16 

GB RAM. The total computational time using the GEMI inversion procedure (32 × 6 realization 

models of EC and MS) was 21 h. The KEG inversion was performed on a personal computer 

with Intel Core i5 1.9 GHz and 8 GB RAM. The KEG inversion took 152 min, plus one additional 

hour for the prior ensemble simulation. 

Both stochastic inversion methods considered are based on a 1D forward model. The same 

approximation was used to generate the synthetic data used in the application example shown 

herein. A 1D forward model represents a simplification of the complex 3D subsurface field 

propagation. In addition, by using the same forward model to build the synthetic and as part of 

the inversion methods, was not accounted the uncertainty related to numerical approximations. 

Three-dimensional forward models are required for complex subsurface geology (i.e., geology 

with significant 3D structure) because 1D approaches are not able to properly capture the 

complex subsurface field propagation and predict reliable inverse models, increasing the 

computational costs of both inversion methods. However, the main conclusions draw from the 

application examples shown in this Chapter would hold as the a priori information related to 

the spatial continuity patterns of EC and MS is not changed. 
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3.5 Conclusion 

In this Chapter is presented a comparison between two different statistical-based FDEM 

inversion methods: the KEG and GEMI method. These inversion methods are applied to a 

freely available 3D synthetic data set rendering realistic spatial distributions of EC and MS. 

The assessment of both methods was developed by comparing the predictions of EC and MS 

using a single realization selected from the posterior distribution and the pointwise mean and 

variance models computed from the posterior. The KEG frequently predicts values of EC and 

MS beyond the minimum and maximum values observed in the prior ensemble derived from 

the borehole data, whereas the GEMI reproduces exactly the histograms retrieved from the 

borehole data. This effect also is observed locally when computing the residuals between the 

reference and the predicted EC and MS models. Similarly, the GEMI tends to reproduce the 

variogram models imposed during the stochastic sequential simulation and co-simulation of 

EC and MS, whereas the KEG has larger degree of freedom to perturb the spatial continuity 

pattern. The latter might be important when the knowledge about the spatial distribution of the 

phenomena to be modeled is largely unknown.  

Overall, both methods succeed in simultaneously reproducing subsurface EC and MS from 

FDEM data, but KEG results in more accurate reconstruction of the MS, considering that 

smaller residuals are more frequent. Overall, by comparing the histograms of the residuals of 

the pointwise average models, the KEG shows more smaller residuals more frequently. 

However, for the MS predictions, the GEMI method delivers very large residuals less frequently 

than the KEG. Another advantage of the GEMI method shows when an FDEM measurement 

response is computed from the resulting EC and MS subsurface models. The FDEM response 

derived from the GEMI subsurface model is much closer to the reference data than its 

equivalent for the KEG method. 

The comparison of the inversion’s uncertainty assessment is somewhat difficult because KEG 

and GEMI rely on different concepts regarding the interpretation of inverse model uncertainty. 

Because the uncertainty in the measurement data is uniform for the entire data set, the KEG 

shows larger uncertainty where the posterior model is more different from the prior model. For 

the GEMI, a link between the shape of measurement sensitivity and inverse model variance is 

partially observed. 

Data associated with this research are available and can be accessed via the following URL: 

http://doi.org/10.5281/zenodo.5116420 . 
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High-resolution characterization of near-surface systems is crucial for a variety of 

subsurface applications. Frequency-domain electromagnetic induction (FDEM) 

has been widely used in near-surface characterization when compared with other 

geophysical methods due to its flexibility in acquisition and the ability to survey 

large areas with high-resolution but with relatively low costs. FDEM measurements 

are sensitive to subsurface electrical conductivity (EC) and magnetic susceptibility 

(MS). However, the prediction of these properties requires solving a geophysical 

inverse problem. This work combines ensemble smoother with multiple data 

assimilation (ES-MDA) and model re-parameterization via randomized tensor 

decomposition (RTD) to simultaneously predict electrical conductivity and 

magnetic susceptibility from measured FDEM data. ES-MDA is an iterative data 

assimilation method, which can be applied to nonlinear forward operators and 

provides multiple posterior realizations conditioned on the geophysical 

measurements to evaluate the model uncertainty. However, its application is 

usually computationally prohibitive for large-scale three-dimensional problems. To 

overcome this limitation, the model parameters are reduced using RTD to perform 

the inversion in the low-dimensional model space. The method is applied to 

synthetic and noisy real data sets. In the synthetic application example, the 

predicted posterior realizations illustrate the ability of the proposed method to 

recover the true models of EC and MS accurately. The real case application 

comprises FDEM data acquired over an arable land characterized by quaternary 

siliciclastic deposits with geoarchaeological features. The performance of the 

inversion method is assessed at a borehole location not used to constrain the 

inversion. The inverted models do capture the available log data, illustrating the 

applicability of the inversion method to noisy real data. 

4.1 Introduction 

Detailed modelling and characterization of near-surface is key to several applications, such as 

sustainable development of soil studies, archaeology, and groundwater management (De 

Smedt et al., 2013; Delefortrie et al., 2014; Simon et al., 2015). This is a challenging task as 

the near-surface is often characterized by strongly heterogeneous geological properties as the 

result of complex interacting processes of both natural and anthropogenic origins, which act at 

different spatiotemporal scales (Morel and Heinrich, 2008).  

Due to the complex nature and dynamics of these systems, its characterization using 

traditional interpolation methods of sparse and discrete direct observations (e.g., borehole 
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data) is not suitable to capture the full spatial variability of the system. Recently, there has 

been an increased interest in using geophysical data to characterize the near-surface. This is 

mainly due to the ability to acquire high spatial resolution data over large areas at relatively 

low-cost, the usability of the existing equipment in different types of terrain, and the ability to 

image subsurface properties (Everett, 2013) that can be interpreted in terms of geological and 

physical processes.  

Among the most common geophysical methods, frequency-domain electromagnetic induction 

(FDEM) allows collecting high-resolution data sets timely and efficiently (Hanssens et al., 

2020), by providing indirect measurements of two key near-surface properties: electrical 

conductivity (EC); and magnetic susceptibility (MS). From a simplistic perspective, EC relates 

mainly to soil salinity, texture, organic matter, moisture content, and bulk density (Doolittle and 

Brevik, 2014; Everett, 2013; Islam et al., 2014a; Islam et al., 2014b, Reynolds, 2011), while 

MS tends to be related to the mineralogy of the near-surface rocks, and anthropogenic features 

(Van De Vijver, 2017). Nevertheless, all these geological properties affect jointly EC and MS. 

However, predicting the spatial distribution of EC and MS from the observed FDEM data 

requires solving a non-linear, ill-conditioned inverse problem with multiple solutions due to 

measurement errors and uncertainties in the model and observations (Tarantola, 2005), the 

band-limited nature and resolution of the FDEM data, noise and physical assumptions 

associated with the forward operators (Qiu et al., 2020). The recorded electromagnetic fields, 

the in-phase (IP) and quadrature-phase (QP) signal components, are related to EC and MS 

through a forward operator 𝐅 that is mathematically described in Equation 2.1. The operator 𝐅 

is commonly approximated using 1D or 2D numerical models, due to prohibitive computational 

costs of three-dimensional forward models (Li et al., 2019).  

Deterministic algorithms as well as stochastic sampling and optimization methods have been 

proposed to solve geophysical inverse problems (Tarantola, 2005). Among stochastic 

approaches the most commonly used methods are Markov chain Monte Carlo (McMC) and 

ensemble-based methods. FDEM inversion methods for near-surface characterization are 

generally based on deterministic approaches. These methods have been used successfully 

applied to model the spatial distribution EC and MS in the near-surface (Deidda et al., 2017; 

Farquharson et al., 2003; Guillemoteau et al., 2016). However, deterministic inversion methods 

predict a single best-fit model and have limited capabilities for uncertainty assessment. Due to 

the non-uniqueness of the solution of the inversion problem, stochastic inversion methods are 

generally preferable. In the stochastic approach, the solution can be expressed as an 

ensemble of models that fit the data within a tolerance and whose variability represents the 

uncertainty of the solution, which can be used to make informed decisions and quantify risks. 
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Stochastic geophysical inverse methods under a Gaussian assumption comprise the so-called 

pilot points method that use sequential geostatistical resampling techniques (e.g., Mariethoz 

et al., 2010; Alcolea et al., 2010; Fu and Gomez-Hernandez, 2009; Hansen et al., 2012; Zahner 

et al., 2016; Jäggli et al., 2017), principal component geostatistical approach (Lee and 

Kitanidis, 2014), methods based on circulant embedding of the covariance matrix (e.g., 

Hansen et al., 2012, Laloy et al., 2015); and methods that allow for jointly inferring the spatial 

correlation model (i.e., mean and variogram) together with the two- and three-dimensional 

spatial distribution of the property field values of interest (Laloy et al., 2015; Hunziker et al., 

2017; Wang et al., 2022).  

The available literature includes statistical approaches to FDEM inversion, but these are limited 

to the prediction of EC (Moghadas and Vrugt, 2019) or rely on Gaussian assumptions for the 

distribution of EC and MS. Trans-dimensional Bayesian inversion of electromagnetic data and 

Markov chain Monte Carlo methods have been proposed in (Blatter et al., 2018; Minsley, 2011; 

Ray and Key, 2012). These approaches generally allow an accurate quantification of the 

posterior distribution; however, the computational cost of the sampling and optimization is 

generally unfeasible for large geophysical datasets. Ensemble-based methods, such as 

ensemble smoother and ensemble Kalman filter (Evensen, 2009), provide a reliable alternative 

to McMC methods, by finding a compromise between model accuracy and computational cost. 

For example, the Kalman ensemble generator (KEG) method (Bobe et al., 2019) detailed in 

section 3.2.1, provides such statistical framework for FDEM inversion. Most publications on 

the application of machine learning in geophysical inverse problem adopt deep learning 

algorithms to approximate the forward model and reduce the problem dimension and the 

computational cost (e.g., Manassero et al., 2020; Puzyrev and Swidinsky, 2021; Qi et al., 2019) 

or use them directly to approximate the inverse function and replace deterministic inversion 

methods (Hashemian et al., 2021; Li et al., 2021). For example, (Manassero et al., 2020) 

propose a reduced-order approach for the inversion of electromagnetic data.  

The techniques to reduce the computational time in high-dimensional probabilistic inverse 

problems, can be generally divided in three categories: (1) approximation of the forward 

operator (i.e., surrogate modelling), (2) dimensionality reduction of the model and/or data 

spaces by re-parameterization, and (3) approximating the posterior distribution by making 

certain assumptions about its probability distribution. The method presented in this Chapter 

explores the points (2) and (3) by combining stochastic inversion with dimensionality reduction 

techniques to perform the inversion in a lower dimensional space. We propose a stochastic 

nonlinear method based on the ensemble smoother with multiple data assimilation (ES-MDA) 

(Emerick and Reynolds, 2013) to invert the FDEM data for EC and MS. ES-MDA is a derivative-

free optimization method that proves useful when the code of forward simulators is 
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inaccessible, or the sensitivity matrix is challenging to derive. Unlike linear Bayesian methods, 

ES-MDA does not require a linear approximation of the forward operator, making it 

advantageous in improving inversion results for non-linear cases. However, ES-MDA poses 

prohibitive computational costs in large geological models. To address this challenge, is 

proposed the use of a randomized tensor decomposition (RTD) to sparsely re-parameterize 

the models and update the model parameters in the low-dimensional space. RTD is a high-

order linear reduction method that can recover spatial structures between multiple dimensions 

of geological models and track uncertainty propagation during model order reduction. 

Compared with deep-learning-based methods, RTD is easier to integrate into the inversion 

workflow and is not limited by computing devices. 

The method presented in this Chapter is first applied in a synthetic two-dimensional data set 

to validate the results obtained and then in a three-dimensional real case application to assess 

its performance in data contaminated with noise. The next sections describe in detail the 

modelling steps of the proposed methodology and the results of its application to the synthetic 

and real data sets. 

4.2 Methodology 

The proposed FDEM inversion method includes the integration of the forward model in section 

4.2.1, the inverse method in section 4.2.2, and the model reparameterization in section 4.2.3. 

4.2.1 Forward response and sensitivity modelling 

The FDEM data comprise both the in-phase (IP) and quadrature-phase (QP) components of 

the electromagnetic field, generally acquired by a loop-loop system. To link the unknown near-

surface properties (i.e., EC and MS) to the measured data, we use a one-dimensional 

nonlinear approximation of the propagated electromagnetic field (Hanssens et al., 2019). This 

forward operator calculates the IP and QP responses per transmitter-receiver coil offset 

located above a model with n layers. In addition to the IP and QP responses, the forward 

operator also calculates the sensitivity analysis through changes in the properties of interest 

at depth. A detailed description of the forward model (Hanssens et al., 2019) used in this 

method can be found in section 2.2.2. 

In this work, geostatistical simulations are used to generate high-resolution subsurface models 

in 3D, then the forward geophysical model described in section 2.2.2 and based on a 1D 

approximation is applied to compute the IP and QP predictions, and the simulated models are 

then updated in 3D using the ES-MDA. The simulation and update of the models is done in 
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3D. To reduce the computational cost, a dimensionality reduction approach is proposed to 

perform the updating in a lower dimensional space and increase the computational efficiency 

(Liu et al., 2022a). The use of the 1D forward model is one of the main limitations of this 

approach as it is unable to capture the propagation of the EM field in the three directions of 

space; however, replacing the 1D approximation would dramatically increase the 

computational cost of the method proposed in this Chapter.  

4.2.2 Inverse method 

For the inversion, numerical approximate methods are adopted for the solution of the 

associated inverse problem. Stochastic method is applied, namely the ES-MDA (Emerick and 

Reynolds, 2013; Grana et al., 2021), for its computing efficiency and the ability to quantify 

uncertainty. ES-MDA is derived from Kalman Filter (Evensen, 2009) to overcome the limitation 

of the operator linearization in non-linear inverse problems and to improve the computational 

efficiency in large-scale optimization and inverse problems. Like the standard Kalman Filter 

(KF), the ES-MDA is based on a Bayesian updating approach and the estimation of model 

parameters from measurements includes two steps: prediction by the forward model from the 

prior realizations, and correction by the measurement according to the likelihood function. In 

the ES-MDA, the Kalman gain is empirically estimated from the ensemble of prior models.  The 

ES-MDA updating equation of model parameters 𝐦 of ES-MDA can be written as: 

𝐦𝑗
𝑢 = 𝐦𝑗

𝑝
+ 𝐊(𝐝̃𝑗 − 𝐝𝑗

𝑝
),      (4.1) 

for 𝑗 = 1, … , 𝑁𝑒with 𝑁𝑒 being the ensemble size, where 𝐦𝑗
𝑝
 represents the prior model 

parameters, 𝐦𝑗
𝑢 represents the updated model parameters obtained by assimilating the 

measurements, 𝐝𝑗
𝑝
 is the predicted data obtained from 𝐦𝑗

𝑝
 through the forward operator 𝐅, 𝐝̃𝑗 

is the observed data with random perturbation according to the distribution of the noise 𝐞, and 

𝐊 ∈ ℝ𝑁𝑚 × ℝ𝑁𝑑 is the Kalman gain matrix. In the ES-MDA, the Kalman gain matrix is 

empirically estimated from the prior models as 

𝐊 = 𝐂𝐦𝐝
𝑝

(𝐂𝐝𝐝
𝑝

+ C𝐝)−1 ,      (4.2) 

𝐂𝐦𝐝
𝑝

=
1

𝑁𝑒−1
∑ (𝐦𝑗

𝑝
− 𝐦̅𝑝)(𝐝𝑗

𝑝
− 𝐝̅𝑝)𝑇𝑁𝑒

𝑗=1  ,    (4.3) 

𝐂𝐝𝐝
𝑝

=
1

𝑁𝑒−1
∑ (𝐝𝑗

𝑝
− 𝐝̅𝑝)(𝐝𝑗

𝑝
− 𝐝̅𝑝)

𝑇𝑁𝑒
𝑗=1 ,    (4.4) 

where 𝐂𝐦𝐝
𝑝

∈ ℝ𝑁𝑚 × ℝ𝑁𝑑 represents the cross-covariance matrix between the prior model 

parameters 𝐦𝑝 and the corresponding predicted data 𝐝𝑝, 𝐂𝐝𝐝
𝑝

∈ ℝ𝑁𝑑 × ℝ𝑁𝑑 is the covariance 
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of the predicted data 𝐝𝑝, C𝐝 ∈ ℝ𝑁𝑑 × ℝ𝑁𝑑 is the covariance matrix of the measurement error 𝐞, 

𝐦̅𝑝 and 𝐝̅𝑝 are the empirical mean of the ensemble of model variables and predicted data, 

respectively. In the linear case, where the forward operator 𝐅 can be expressed as matrix G, 

the covariance matrices 𝐂𝐦𝐝
𝑝

 and 𝐂𝐝𝐝
𝑝

 are corresponding to 𝐂𝐦𝐆T and 𝐆𝐂𝐦𝐆T, respectively, 

where 𝐂𝐦 is the covariance of model parameters. Equations 4.1 and 4.2 show that the Kalman 

Gain matrix controls the trade-off between the prior predictions and updated correction driven 

by measurements according to their uncertainties. The weights of measurements are large if 

the measurement errors are small and vice versa. For nonlinear inverse problems, it is 

necessary to iteratively update the model variables to achieve a satisfactory match between 

prediction and measurements. One common strategy is to sequentially assimilate observations 

at each time step (e.g., ensemble Kalman Filter), but this procedure requires to perform forward 

simulations every time step and thus it is computationally inefficient. Alternatively, in ES, all 

data available are simultaneously used for model updating. To guarantee the convergence 

between the model predictions and measurements in nonlinear cases, the simultaneous data 

assimilation is performed multiple times. This method is referred to as ES-MDA (Emerick and 

Reynold, 2013). 

ES-MDA is an iterative method. An ensemble of prior models is first sampled from a prior 

distribution and iteratively updated until the models are consistent with the measured data. 

Each data assimilation step can be interpreted as a Bayesian updating process, where the 

models updated in the previous iteration are used as the prior at the current step and then 

corrected by assimilating the observations. The algorithm of ES-MDA can be summarized as 

follows: 

i) Define the ensemble size 𝑁𝑒, the number of data assimilations 𝑁 and the inflation 

coefficients {𝛼𝑘}𝑘=1,…,𝑁 with the constraint ∑ 𝛼𝑘
−1𝑁

𝑘=1 = 1. 

ii) Generate an ensemble of 𝑁𝑒 prior realizations {𝑚𝑗}
𝑗=1,…,𝑁𝑒

 of the EC and MS 

models conditioned on the available borehole data using geostatistical simulation 

algorithms. 

iii) For 𝑘 = 1 𝑡𝑜 𝑁 

• Compute the geophysical response of each prior realization {𝐝𝑗
𝑝

}
𝑗=1,… ,𝑁𝑒

 using 

the forward model described in section 2.2.2. 

• Perturb the observations {𝐝̃𝑗}
𝑗=1,… ,𝑁𝑒

 for each ensemble member as  
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𝐝̃𝑗 = 𝐝obs + √𝛼𝑖𝐂𝐝
1/2

𝛜j ,     (4.5) 

where 𝛜j~𝒩(𝟎,  𝐈𝑁𝑑
). 

• Update model ensemble {𝐦𝑗}
j=1,…,𝑁𝑒

 using Equations 4.1 to 4.4. 

End 

The solution of the inverse problem is a linear combination of the updated ensemble models. 

The ensemble models, at each iteration, are updated according to the residuals between 

predicted and observed data and the cross-covariance matrix of the residuals and model 

variables. The initial ensemble must be large enough to represent the prior variability. If the 

variability of the prior is too small, the uncertainty could be severely underestimated. The 

number of iterations is established through a trial-and-error approach. Publications on data 

assimilation in dynamic reservoir modelling show that a number of iterations between 4 and 8 

is generally sufficient (Emerick and Reynolds, 2013). In geophysical inverse problems, the 

large amount of data makes the problem less underdetermined than fluid flow modelling 

problems, hence 4 iterations are generally sufficient (Grana et al., 2021). However, due to the 

large number of measurements, a large ensemble is necessary to avoid uncertainty 

underestimation or ensemble collapse. The prior model includes the prior distribution of the 

model variables and the spatial correlation model of the realizations. For datasets with large 

errors, the prior distribution has a strong impact on the posterior realizations, especially the 

spatial correlation model. In these cases, alternative methods that predict jointly the model 

parameters and the spatial correlation model can be used (Laloy et al., 2015; Hunziker et al., 

2017; Wang et al., 2022). The vertical correlation can be estimated from well log data, whereas 

the lateral correlation must be assumed based on prior geological information. For simplicity, 

the data errors are assumed to be spatially uncorrelated with diagonal covariance matrix; 

however, if geophysical data are pre-processed for quality control and denoising, the error 

model could be correlated, and the covariance matrix of the data is banded. The assumption 

of the banded covariance matrix is generally challenging in practical applications. Large 

variances of the errors tend to make the prior dominant on the data-driven likelihood function 

and might lead to a poor data match, whereas small variances of the errors tend to make the 

likelihood function predominant and might lead to unphysical values of the model variables. 

4.2.3 Model re-parameterization 

Due to the large dimension of the model grids in real applications, the ES-MDA method is often 

computationally and memory prohibitive. Therefore, the method presented in this Chapter 

proposes to reduce the model parameters using the RTD method and then perform the data 
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assimilation in the reduced model space. After each data assimilation, the reduced model 

parameters can be back transformed to the full model space using the factor matrices obtained 

by RTD. 

A tensor is a multi-index numerical array, which can be used to represent high-dimensional 

data. Conventional multivariate data analysis approaches based on standard flat-view matrix 

models requires reshaping the data tensor into a matrix or vector and applying classical matrix 

factorization methods, such as singular value decomposition (SVD) non-negative matrix 

factorization (NMF), or independent component analysis (ICA) (Cichocki et al., 2015). These 

methods can be efficiently implemented but they might struggle to capture spatial correlations 

in multiple dimensions, which limits their performance in high-dimensional data analysis. 

Tensor decomposition methods are based on multilinear algebra and can exploit the intrinsic 

multi-dimensional patterns in the model space, as the RTD used in this work. In recent years, 

many deep-learning-based reduction methods have been proposed to overcome the limitation 

in geoscience problems (e.g., Laloy et al., 2017; Laloy et al., 2018; Canchumuni et al., 2019; 

Liu and Grana, 2020; Lopez-Alvis et al., 2021; Mo et al., 2019). However, those methods based 

on deep neural networks usually require thousands of prior models for training and are 

relatively difficult to integrate with ES-MDA. 

The canonical polyadic (CP) decomposition and the Tucker decomposition are the two most 

popular tensor decomposition algorithms (Rabanser et al., 2017). The CP decomposition 

represents a tensor as a linear combination of vectors, whereas the Tucker decomposition 

decomposes a tensor into a small dense core tensor and a set of factor matrices. In this work 

is adopted the Tucker decomposition, because it is more suitable for dimensionality reduction 

in which the core tensor can be regarded as the sparse features extracted from the original 

tensor data and the factor matrices can be used for back-transformation. 

The Tucker decomposition of an 𝑁th order tensor 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁  can be expressed as:  

𝒳 = 𝒢 ×1 𝑩(1) ×2 𝑩(2) … ×𝑁 𝑩(𝑁) ,    (4.6) 

where the symbol ×𝑛 represents the tensor-matrix multiplication along mode-𝑛, 𝒢 is the 

nondiagonal core tensor that includes the information for the extension of the tensor 

components, and {𝑩(𝑛)}
𝑛=1,…,𝑁

 are factor matrices that represent the principal components in 

the respective tensor modes.  

A graphical view of the Tucker decomposition is presented in Figure 4.1. Tensor decomposition 

is also non-unique. A decomposition where core tensor and all factor matrices are orthonormal 
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is referred to the Higher-Order Singular Value Decomposition (HOSVD) (De Lathauwer et al., 

2000a; De Lathauwer et al., 2000b). 

 

Figure 4.1 Tucker decomposition of a third-order tensor. 

In practice, the 3D geological models might consist of millions of grid cells. Due to the limited 

memory and high computational complexity, the conventional tensor decomposition methods 

are usually not applicable. Randomized algorithms are then used for large-scale tensors. The 

randomized approach aims to find the low-rank approximation of the unfolding matrices of 

large-scale tensors via the probabilistic strategy (i.e., random sketching) and then perform 

matrix factorization on the small matrices. One popular method is the random projection in 

which a large-scale matrix is reduced using the transformation of a random matrix with given 

probability distribution. The detailed steps of the randomized HOSVD of an 𝑁th order tensor 

data 𝒳 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 are summarized as follows: 

i) Define the number of iterations 𝑁𝑖𝑡 and a multilinear rank (𝑅1, 𝑅2, … , 𝑅𝑁). 

ii) Initialize the factor matrices {𝑩(𝑛) ∈ ℝ𝐼𝑛 × ℝ𝑅𝑛}
𝑛=1,…,𝑁

 as random Gaussian 

matrices. 

iii) For 𝑖 = 1 to 𝑁𝑖𝑡: 

For 𝑛 = 1 to 𝑁: 

• 𝒵 = 𝒳 ×𝑝≠𝑛 {𝑩(𝑛)𝑇
}. 

• Generate a random matrix 𝛀(𝑛) ∈ ℝ∏ 𝑅𝑝𝑝≠𝑛 × ℝ𝑅𝑛 drawn from Gaussian 

distribution.  

• Compute 𝐖(𝑛) = 𝒵(𝑛)𝛀(𝑛) where 𝒵(𝑛) ∈ ℝ𝐼𝑛 × ℝ∏ 𝐼𝑝𝑝≠𝑛  is the 𝑛-unfolding 

matrix of tensor 𝒢. 
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• Compute the orthonormal basis 𝐐(𝑛) ∈ ℝ𝐼𝑛 × ℝ𝑅𝑛 of 𝐖(𝑛) by QR 

decomposition. 

End 

• Compute the core tensor 𝒢 = 𝒵 ×1 𝑸(1)𝑇
×2 𝑸(2)𝑇

… ×𝑁 𝑸(𝑁)𝑇
 

End 

Herein, is proposed the RTD algorithm as a dimensionality reduction method to reduce the 

dimension of the model and update the variables in a low dimensional model space. This 

approach allows improving the computational efficiency of the inversion. In this work, the 

uncertainty in the RTD transformation and the uncertainty in the inversion are not 

differentiated. The larger is the number of ensemble members, the smaller is the 

underestimation of the uncertainty. Similarly, the larger is the reduction of the model space, 

the larger is the overestimation of the uncertainty. By adopting a trial-and-error approach, can 

be determined, case by case, the optimal dimension of the model space and of the model 

ensemble. A detailed analysis of the uncertainty quantification in geophysical inverse problems 

with model and data reduction is presented in (Grana et al., 2019). 

The presented FDEM inversion method predicts a set of model realizations that represent the 

posterior distribution of the inverse solution. Figure 4.2 illustrates the inversion workflow of ES-

MDA with RTD. It starts with a set of prior realizations of EC and MS {𝐦𝑗
𝑘=0}1

𝑁𝑒 simulated by 

geostatistics algorithms. Then, their EM responses {𝐝𝑗
𝑘}1

𝑁𝑒 are predicted by the forward model 

and the reduced model parameters {𝐳𝑗
𝑘}1

𝑁𝑒 are obtained by the RTD. The reduced model 

parameters are then updated {𝐳𝑗
𝑘+1}1

𝑁𝑒 by assimilating the observations with ES-MDA. It is an 

iterative procedure in which the prior models in the next iteration {𝐦𝑗
𝑘+1}1

𝑁𝑒 are back 

transformed from {𝐳𝑗
𝑘+1}1

𝑁𝑒 by the inverse RTD. In the FDEM inversion method presented in 

this Chapter, both the ES-MDA and the model reduction with RTD affect the uncertainty 

assessment of the posterior solution. The performance of the ES-MDA depends on the number 

of models in the initial ensemble while the performance on the RTD depends on the 

dimensionality of the lower-dimensional space. Other stochastic inversion methods with robust 

uncertainty assessment, such as Markov chain Monte Carlo method (Blatter et al., 2018) could 

also be adopted. 
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Figure 4.2 Workflow of ES-MDA with RTD. 

4.3 Synthetic case application 

The inversion method presented in this Chapter was first applied to a vertical section of the 3D 

synthetic data set presented in section 2.3.1 and based on real data collected at a mine tailing 

in Portugal (Panasqueira). This dataset comprises laboratory measurements of porosity and 

particle density obtained from samples collected from two main rock types of the site: fine-

shaly sands (which constitutes the predominant rock type), and quartz-schist gravels. The 

models of the main physical properties (e.g., porosity, particle density) were first generated 

using direct sequential simulation (Soares, 2001) based on a variogram model that represents 

the expected spatial correlation of each property. The true EC model is then generated from 

these main physical properties using Archie’s equation (Archie, 1942). The true MS model is 

generated using geostatistical simulations (Soares, 2001) based on a variogram model that 

describes the expected spatial distribution pattern of MS. From the resulting EC and MS 

models (Figures 4.3a and 4.3b), four pseudo-boreholes were extracted equally spaced along 

the vertical section. A detailed description of this synthetic data set can be found in section 

2.3.1. 

The prior ensembles of EC and MS include 500 geostatistical realizations generated using 

direct sequential simulation (Soares, 2001). This set of models represents the model 

parameter space and the histograms of both properties as retrieved from the borehole data. 

Therefore, this geostatistical simulation algorithm does not assume any parametric distribution 

for the property of interest. The EC and MS data extracted at the borehole locations are used 

as conditioning data for the geostatistical simulation so that all model realization reproduce the 

borehole data at the borehole locations. Based on the spatial continuity retrieved from the 

borehole data, the prior ensemble of realizations is simulated by imposing omnidirectional 

horizontal exponential variograms for EC and MS with a range of 6 m and 8 m, respectively. 

The vertical direction is modelled with exponential variograms with a range of 4 m for EC and 

6 for MS (Table 4.1). 
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Figure 4.3 True and prior mean of EC and MS of the synthetic case: (a) true EC model; (b) true MS 

model; (c) prior mean of EC; and (d) prior mean of MS. It is clear the influence of the borehole data 

in the prior mean of EC and MS. 

Table 4.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total 

variance of the data, for the variogram models used to simulate and co-simulate EC and MS. 

Omnidirectional spherical variogram EC models MS models 

Horizontal range 6 m 8 m 

Vertical range 4 m 6 m 

Nugget effect 5 % 5 % 

 

The true FDEM data were generated using the forward model (Hanssens et al., 2019) 

described in section 2.2.2, and mimicking the coil configurations of a multi-receiver FDEM 

sensor, namely a DUALEM-21S (DUALEM Inc., Milton, Canada). Therefore, was considered 

a loop-loop system setup, characterized by one transmitter coil and multiple receiver coils with 

two spatial configurations and two offsets per coil configuration, namely the horizontal coplanar 

(HCP) configuration with 1 and 2 m offset, and the perpendicular (PRP) configuration with 1.1 

and 2.2 m offset. The data are contaminated by Gaussian noise and the noise level is 10% of 

the observations. 

The model grid includes 40040 cell in the i- and k- directions, respectively. The pointwise 

mean models of the prior EC and MS ensembles (Figures 4.3c and 4.3d) reproduce the true 

EC and MS measurements at the borehole locations. Far from the location of the boreholes, 

and for distances larger than the variogram range, these models tend to the average value of 

the distribution. For this 2D example, both EC and MS model are a third order tensor with a 

size of 40040500 (corresponding to the numbers of model grids in the i- and k- directions, 

and ensemble size, respectively). The tensors of EC and MS model are reduced to 405500 

by the RTD algorithm with four iterations before data assimilation. The ES-MDA is then applied 

in the reduced model space. The number of iterations of the ES-MDA is 4 with the inflation 
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coefficients of 9.33, 7.0, 4.0 and 2.0, which are recommended by Emerick and Reynolds 

(2013). The posterior mean of EC and MS is shown in Figures 4.4a and 4.4b, and the posterior 

standard deviation is shown in Figures 4.4c and 4.4d. The absolute residuals between the 

predicted posterior mean and the true models are shown in Figures 4.4e and 4.4f. The results 

capture small- and large-scale features of the true EC and MS models up to the depth of 

investigation provided directly by the forward operator used in the inversion (Hanssens et al., 

2019) which is estimated to be approximately 3 m with the coil configurations used in this 

application. The inversion, by construction, reproduces exactly the measurements at the 

borehole locations. Hence, the posterior standard deviation is zero at the borehole location 

and it increases with the distance from the borehole locations.  

 

Figure 4.4 Posterior mean, standard deviation (std.) and residual of EC and MS of the synthetic case: 

(a) posterior mean of EC models; (b) posterior mean of MS models; (c) posterior std. of EC; (d) 

posterior std. of MS; (e) absolute error between the posterior mean and the true EC; (f) absolute error 

between the posterior mean and the true MS. 

Despite the large variability in the values of the QP and IP responses predicted from the prior 

models for all coil offsets (Figures 4.5 and 4.6) the posterior model of QP and IP matches the 

observed data for most of the observations. At some locations the predicted models show 

mismatches with the observation. These results might be related simultaneously to the noise 

component within the data and the uncertainty originated due to the dimensionality reduction 

technique applied as part of the proposed method (i.e., RTD) (Grana et al., 2019; Liu et al., 

2022a). 
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Figure 4.5 Predicted IP data from the prior and posterior EC and MS models of the synthetic case. 

The red dots are the true measurements with noise; the black lines represent the true data without 

noise; the intervals in grey and light blue correspond to the region between the percentiles P5 and 

P95 of the prior and posterior prediction, respectively; the black and blue lines represent the prior 

mean and posterior mean, respectively. 

 

Figure 4.6 Predicted QP data from the prior and posterior EC and MS models of the synthetic case. 

The red dots are the true measurements with noise; the black lines represent the true data without 

noise; the intervals in grey and light blue correspond to the region between the percentiles P5 and 

P95 of the prior and posterior prediction, respectively; the black and blue lines represent the prior 

mean and posterior mean, respectively. 
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4.4 Real case application 

The proposed ES-MDA with RTD to the FDEM inversion was applied to the same a real data 

set from a FDEM survey described in section 2.4.1. This FDEM survey was acquired over 

arable land with slight slope and 20 cm of rendzina soil cover, located near Knowlton (Dorset, 

UK), and containing several archaeological features. The region of interest is characterized by 

Cretaceous chalk in the shallow subsurface, and calcareous ooze, overlain by Quaternary 

siliciclastic sand deposits. The Cretaceous formation is characterized by a background 

susceptibility of zero and a low EC (~ 7 m/Sm), while the sand deposits is strongly magnetic 

(MS ≈ 1x10-3) and slightly more conductive than the bedrock. In this area IP anomalies are 

related to the buried archeology and the background geology provides a large range of QP 

values (Delefortrie et al., 2018).  

The FDEM data are collected using a DUALEM 21HS instrument, with an operating frequency 

of 9000 Hz in a loop-loop setup, elevated at 0.16 m from the surface pulled by a quadbike. The 

data acquisition was performed along parallel lines 1 m apart at a speed of ~8 km/h, and a 

sampling frequency of 8 Hz. This application used the FDEM data collected from one 

transmitter paired with two coplanar receiver coils, in horizontal mode, at 1 and 2 m from the 

transmitter (HCP1 and HCP2, respectively), and two receivers in vertical model, 1.1 and 2.1 

m from the transmitter (PRP1 and PRP2, respectively). The measured IP and QP data are 

noisy and with systematic errors; therefore, a calibration was performed before the inversion 

using the existing EC and MS borehole measurements, applying a drift correction consisting 

of tie-line levelling as described in (Delefortrie et al., 2018). However, was not tackled the 

striping effect present in the PRP IP signal and the point anomalies observed in HCP QP signal 

(Delefortrie et al., 2018). These characteristics of the observed signal do affect the quality of 

the inversion results and the match between predicted and observed data. 

EC and MS data are collected in twelve boreholes at intervals of 5-10 cm, reaching a maximum 

depth of 1.2 m and a minimum of 0.8 m. Eleven boreholes were used to compute horizontal 

and vertical experimental variograms based on a spherical model (omnidirectional in the 

horizontal direction) for both EC and MS properties, with horizontal range of 16.8 m for EC and 

28.2 m for MS, and vertical range of 0.8 m for EC and 0.7 m for MS.  

The model grid includes 53117120 cells in the i-, j- and k- directions. A set of 500 

geostatistical realizations of EC and MS is then generated conditioned on the borehole data 

and assuming variogram models fitted to experimental variograms computed from the 

borehole data. The mean prior models of EC and MS (Figures 4.7a and 4.7b) match the 
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borehole measurements and tend to the mean of the direct measurements away from the 

borehole.  

 

Figure 4.7 Prior mean of EC (a) and MS (b) models of the real case. The black dashed lines represent 

the locations of the X-, Y- and depth slices, and the black dots represent the well locations. 

For this 3D case, both EC and MS model is a fourth order tensor with a size of 

53117120500 (corresponding to the numbers of model grids in the i-, j- and k- directions, 

and ensemble size, respectively). The tensors of EC and MS model are reduced to 

20405500 by the RTD algorithm with four iterations before data assimilation. Then was 

applied the ES-MDA inversion with 4 iterations and inflation coefficients of 9.33, 7.0, 4.0 and 
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2.0 (Emerick and Reynolds, 2013). The posterior mean models (Figures 4.8a and 4.8b) show 

a detailed spatial distribution pattern with a layer of continuous high conductivity and 

susceptibility at around 1 m depth. This value is consistent with the observed depth of the top 

chalk as interpreted from the existing borehole data (Delefortrie et al., 2018). The posterior 

standard deviation of EC and MS is shown in Figure 4.9. As the prior ensemble of EC and MS 

was constructed with geostatistical simulation, the predicted EC and MS values at the borehole 

locations are exactly reproduced.  

 

Figure 4.8 Posterior mean of EC (a) and MS (b) models of the real case. The black dashed lines 

represent the locations of the X-, Y- and depth slices. 
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Figure 4.9 Posterior standard deviation of EC (a) and MS (b) models of the real case. The black 

dashed lines represent the locations of the X-, Y- and depth slices. 

In Figures 4.10 and 4.11, is shown the comparison between predicted and measured IP and 

QP data. The predicted data match relatively well the observed data. The mismatch between 

the predicted and observed data might be due to the noisy nature of the data, as described 

above, and the one-dimensional approximations of the forward operator that cannot model 

complex and highly heterogenous lateral distributions of electrical properties. The 

parametrization of the RTD and the ES-MDA might be partly attributed to the misfit between 

predicted and observed data. 
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Figure 4.10 Predicted IP data from the prior and posterior EC and MS models of the real case. The 

red dots are the true measurements; the intervals in grey and light blue correspond to the region 

between the percentiles P5 and P95 of the prior and posterior prediction, respectively; the black and 

blue lines represent the prior mean and posterior mean, respectively. 

 

Figure 4.11 Predicted QP data from the prior and posterior EC and MS models of the real case. The 

red dots are the true measurements; the intervals in gray and light blue correspond to the region 

between the percentiles P5 and P95 of the prior and posterior prediction, respectively; the black and 

blue lines represent the prior mean and posterior mean, respectively. 

The computational cost of one updating step for ES-MDA is 𝒪(𝑁𝑒
2𝑁𝑚 + 𝑁𝑒

2𝑁𝑑) where 𝑁𝑒, 𝑁𝑚 

and 𝑁𝑑 are the ensemble size, the number of model parameters and observations, respectively 

(Nino Ruiz et al., 2015). In the real case, the ensemble size is 500; the number of observations 

is 26,640; the numbers of model parameters with and without reduction are 1,816,020 

(17153120) and 4,000 (20405), respectively. The speed-up ratio with model dimension 

reduction by RTD is roughly 60.14. 
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4.5 Discussion 

This Chapter proposes a stochastic FDEM inversion method in a reduced space leveraging 

the benefits of RTD with respect to dimensionality reduction. The method is illustrated in two 

application examples: one synthetic and one real. First, we considered a 2D synthetic data set 

to evaluate the accuracy of the predictions. Then, the proposed method was applied in a real 

3D data set to assess its performance under real noise conditions. In both application 

examples the data predictions do match the observed FDEM data (Figures 4.5, 4.6, 4.10 and 

4.11). Besides, when observing the residuals between model predictions of EC and MS and 

the true model (Figure 4.4e and 4.4f) they do not exhibit any spatial continuity pattern that is 

consistent with the true EC and MS spatial continuity pattern. In both application examples the 

prior ensembles of EC and MS are constructed via geostatistical simulation. While alternative 

methods can be applied, this class of methods have the ability to reproduce direct observations 

(i.e., borehole data, histograms and spatial continuity patterns as revealed by variogram 

models). For this reason, when relying on geostatistical simulation to build the prior ensemble, 

a critical aspect for the success of the proposed inversion method is the availability of borehole 

data and its spatial distribution within the area of interest. Spatial sampling, including the spatial 

distributions of conditioning data, has been extensively studied in mining engineering (Journel 

and Huijbregts, 1978). A limited number of boreholes might affect the accuracy of the inversion 

and lead to large uncertainties in the predictions. In real applications, the prior distributions 

and variogram models assumed in the generation of the prior ensembles should account for 

prior geological information available for the area under investigation as well as direct 

measurements from nearby areas. 

Figures 4.5, 4.6, 4.10 and 4.11 show that the P5-P95 interval of the predicted data do not 

encapsulates entirely the observed data. In other words, there is an underestimation of the 

predicted uncertainty. This fact might be originated by two complementary reasons: the 

reparameterization of the model parameter space with the RTD affects the uncertainty 

assessment (Grana et al., 2019 and Liu et al., 2022b); the ES-MDA has a better performance 

for non-Gaussian and non-linear inverse problems. Finally, to assess the performance of the 

inversion locally, one borehole from the conditioning data set was removed in the real case 

application. Removing a larger number of conditioning boreholes would decrease the accuracy 

of the predictions as the estimation of the EC and MS distributions would be poor. The 

comparison between the predicted properties and the borehole measurements at the location 

of the borehole not used to constrain the inversion is shown in Figure 4.12. Despite the limited 

length of the measured EC and MS, the estimated posterior distribution matches the true EC 

and MS. Due to the relatively small number of samples the predictions in the deeper part of 

the model are less reliable. 
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Figure 4.12 Comparison of the predicted and measured EC (a) and MS (b) at the blind well of the 

real case. The red dots are the true measurements; the intervals in grey and light blue correspond to 

the region between the percentiles P5 and P95 of the prior and posterior realizations, respectively; 

the blue lines represent the posterior mean. 

The ES-MDA was used due to its relatively simplicity of implementation and its potential to 

efficiently assess the posterior distribution in geophysical inversion problems. However, the 

computational cost of ES-MDA might be prohibitive for large-dimensional inverse problems 

such as FDEM inversion. For this reason, was combined RTD, a dimensionality reduction 

technique of the model parameter space, with ES-MDA. The application examples shown 

herein, show that the coupling of both methodologies is an efficient solution to alleviate the 

computational burden of ES-MDA without compromising the model predictions and the 

uncertainty assessment despite assumptions about the prior distributions of the model 

parameters. 

4.6 Conclusion 

In this Chapter is proposed a FDEM inversion method that combines ES-MDA with RTD to 

predict the spatial distribution of EC and MS. The initial prior ensemble of models is generated 

using geostatistical simulation, to model the complex and heterogeneous subsurface 

distributions. Then, RTD coupled with ES-MDA makes the inversion method computationally 
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feasible and applicable to 3-dimensional grids with a large number of cells. This FDEM 

inversion method was validated on a two-dimensional synthetic data set and then applied to a 

3-dimensional real data set. In both application examples, the predicted models reproduce the 

measured EC and MS data while allowing assessing the uncertainty of the predictions. The 

proposed inversion relies on a one-dimensional forward approximation but could be extended 

to more complex physical models. 

4.6.1 Conclusion data and materials availability 

The code and synthetic data are freely available on GitHub 

(https://github.com/theanswer003/ES-RTD-FDEM) 

 

  

https://github.com/theanswer003/ES-RTD-FDEM
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Geostatistical joint inversion of 

FDEM and DC resistivity data  
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Due to their sensitive to subsurface electrical conductivity (EC), direct-current 

resistivity and electromagnetic geophysical methods, particularly electrical 

resistivity tomography (ERT) and frequency-domain electromagnetic (FDEM) 

methods, have been widely applied in different near-surface activities, such as 

agriculture, urban development, or investigation of mineral and groundwater 

resources. Predicting the spatial distribution of EC from FDEM and ERT data 

requires solving a geophysical inversion problem. Due to the different spatial 

resolutions of both methods, and the nonlinearity of the inverse problem, individual 

inversions of each type of the geophysical data have been the standard to predict 

EC. However, the joint inversion of FDEM and ERT data has the potential to reduce 

the non-uniqueness of the inversion solution and to increase the ability to model 

the small-scale spatial heterogeneity which is characteristic of near-surface 

environments. We propose herein an iterative geostatistical joint inversion method 

of FDEM and ERT data. A geostatistical framework is used to couple both data 

domains in a consistent spatial model. The misfit between predicted and observed 

data simultaneously for both domains drives the convergence of the iterative 

procedure. The method is validated in a synthetic data set that illustrates a complex 

and highly heterogeneous near-surface environment. The proposed joint inversion 

method is also applied in a real case, characterized by high conductivity field data. 

The joint inversion results present improvements over the FDEM inversion results 

in both synthetic and real case applications, specifically in the modelling of the 

small-scale variability and the reduction of the spatial uncertainty at depth. In both 

application examples, the models predicted at the last iteration agree with the 

expected spatial distribution of the true EC field. 

5.1 Introduction 

The near-surface is a heterogeneous and highly dynamic region of the subsurface, particularly 

in urban environments, as the result of complex, interacting processes of both natural and 

anthropogenic origin (e.g., Lehmann and Stahr, 2007; Morel and Heinrich, 2008). Due to these 

reasons, an accurate characterization of the spatial distribution of the near-surface geological 

properties is often challenging, yet essential for different activities (e.g., groundwater 

contamination, geotechnical engineering, mineral resources prospecting, soil assessment, 

archaeological detection). The characterization of these systems based exclusively on discrete 

direct observations acquired through conventional invasive sampling techniques, such as 

drilling and core sampling, can capture the vertical spatial variability of these heterogeneous 

deposits at sparse location in space. These techniques are expensive, impractical to perform 
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in some sites and reveal limitations in capturing the lateral spatial variability of near-surface 

properties. Non-invasive geophysical surveys, particularly electrical and electromagnetic 

methods, have been proven powerful tools for the collection of virtually spatially continuous 

high-resolution datasets that can be translated in detailed images of the near-surface physical 

properties (Moorkamp, 2017). Within this context, frequency-domain electromagnetic (FDEM) 

induction and electrical resistivity tomography (ERT) methods have demonstrated their 

efficiency to characterize heterogeneous subsurface systems. Both methods are sensitive to 

electrical conductivity (EC), while frequency-domain electromagnetic data can additionally be 

linked to the subsurface magnetic susceptibility (MS) and dielectric permittivity (Everett, 2013). 

EC is directly related to porosity, water saturation and the conductivity of pore fluids, while MS 

is a function of the metal content in the subsurface. 

The data acquired from both geophysical methods can be translated into numerical subsurface 

models of the physical subsurface properties of interest by solving a geophysical inversion 

problem. These geophysical inverse problems are ill-posed nonlinear problems and have a 

nonunique solution due to the larger number of model parameters when compared against the 

observed data. This is because geophysical measurements are band-limited and 

contaminated by noise and inconsistencies during the collection of the data set, resulting in 

uncertainties in the inverse models (Tarantola, 2005). 

A joint inversion of multiple geophysical methods, sensitive to a common subsurface property, 

or properties, can potentially improve the predicted subsurface models, while reducing the 

uncertainty of the predictions (Moorkamp, 2017). The joint inversion leverages the benefits of 

each method individually resulting in better predictions about the geometry and spatial 

distribution of the subsurface properties when compared to using just a single method, hence 

mitigating the non-uniqueness of the inverse problem (Bobe et al, 2020). Although FDEM and 

ERT data are sensitive to the same subsurface physical property, both methods are often 

interpreted and modelled separately. Nevertheless, inverting both data sets in a joint inversion 

framework is generally a preferable approach due to the complementary information about the 

subsurface provided by each method due to differences in the spatial resolution. Regarding 

the complementary information from FDEM and ERT data sets, while FDEM inversion can 

detect thin conductive layers and fails to model thin resistive layers in conductive 

environments, ERT inversion have the opposite characteristics (Sharma and Kaikkonen, 

2003). However, handling the differences in the resolution and nature of both methods is not 

straightforward.  

A few approaches for joint inversion of direct current (DC) electrical resistivity and 

electromagnetic induction (EMI) data have been presented (e.g., Raiche et al., 1985; Sharma 
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and Kaikkonen, 2003; Yi and Sasaki, 2015). These methods apply deterministic gradient-

based geophysical inversion approaches, which are not capable to assess uncertainty of the 

predicted subsurface model. Also, these methods are based on the use of arbitrary weights in 

the objective function to balance the importance, and assimilation of each data set, during the 

inversion procedure.  

Probabilistic inversion approaches can quantify the uncertainty related to the prediction 

obtained from solving a geophysical inverse problem. The common approach in geophysical 

inversion is the use of Markov chain Monte Carlo (MCMC) (Tarantola, 2005). However, in joint 

inversion application with highly parametrized models, the forward model is computationally 

expensive, which can limit the applicability of the MCMC methods and their convergence within 

a reasonable number of forward model runs (Sambridge and Mosegaard, 2002). Rosas-

Carbajal et al. (2013) jointly invert DC resistivity and EMI data using a joint inversion method 

based on MCMC and the plane waves approximation. Their results show a reduction of the 

uncertainty in the predicted models by comparison to the separate MCMC inversion of these 

geophysical data. Bobe et al. (2020) introduce a joint inversion of DC resistivity and small-loop 

EMI data based on the Kalman ensemble generator (KEG) as alternative to a MCMC inversion 

framework. While this KEG method is computational less expensive then MCMC it assumes 

Gaussian distribution for the probability distribution of the model parameters and the errors 

present in the observed data.  

In this work, we present an iterative geostatistical joint inversion technique of FDEM and ERT 

data for EC, based on a previously established iterative geostatistical FDEM inversion 

technique (Narciso et al., 2022) (Chapter 2). A geostatistical framework is used to couple both 

data domains in a consistent spatial model while assessing the uncertainty of the predicted 

models. For each geophysical data, a dedicated forward model is used to compute synthetic 

data. The misfit between predicted and observed data for each domain drives the convergence 

of the iterative procedure, conditioning the co-simulation of new EC models in the subsequent 

iterations. The method is validated in a synthetic data set that illustrates a complex and highly 

heterogeneous near-surface environment, developed from direct and laboratory 

measurements on geological samples collected at a mine tailing disposal site in Portugal 

(Panasqueira). The proposed iterative geostatistical joint inversion method is also applied in a 

real case study, characterized by high conductivity field data. The results obtained are 

discussed against the individual inversion of the FDEM data, and present improvements in 

both synthetic and real case applications, specifically in the modelling of the small-scale 

variability and the reduction of the spatial uncertainty at depth. In both applications, the models 

at the last iteration that predict FDEM and ERT data match better the observed data of each 



Joint inversion method 

93 
 

geophysical method and reproduces better the true electrical conductivities, than the models 

obtain from the FDEM inversion. 

5.2 Methodology 

The proposed iterative geostatistical joint inversion method predicts the spatial distribution of 

EC from FDEM and ERT data and also predicts the spatial distribution of MS from FDEM data. 

The relationship between the model parameters (𝐦) (i.e., EC and MS) and both geophysical 

data (𝐝𝐨𝐛𝐬), contaminated by noise (𝛜), can be mathematically summarized by 

𝐦 = F−1(𝐝𝐨𝐛𝐬 + 𝛜).     (5.1) 

We approximate the inverse problem stated in Eq. 5.1 with an iterative geostatistical 

geophysical inversion method based on global approach (Azevedo and Soares, 2017, Narciso 

et al., 2020). It relies on two key main ideas: i) the perturbation of the model parameter space 

and update technique with stochastic sequential simulation and co-simulation (Soares, 2001); 

and ii) the convergence is ensured by a global stochastic optimizer driven simultaneously by 

the misfit between true and synthetic FDEM and ERT data. The proposed iterative 

geostatistical joint inversion methodology may be summarized in the following sequence of 

steps (Figure 5.1) and divided in four main steps, which are described in detail below. 

5.2.1 EC and MS model generation 

The proposed iterative geostatistical joint inversion methodology starts with the generation of 

sets of Ns models of EC and MS with stochastic sequential simulation and co-simulation 

(Deutsch and Journel, 1998). Each model is simulated, or co-simulated, for the entire inversion 

grid at once. Available direct measurements of EC and MS from borehole data are used as 

conditioning experimental data. The spatial continuity pattern of the simulated models is 

imposed through a variogram model, fitted to experimental variograms computed from the 

available direct measurements, or borrowed from a prior geological knowledge. In the 

proposed joint inversion methodology, we use direct sequential simulation (Soares, 2001) and 

co-simulation with joint probability distributions (Horta and Soares, 2010) as model 

perturbation technique. Unlike sequential Gaussian simulation (SGS) (Deutsch and Journel, 

1998), these stochastic sequential simulation techniques do not impose any condition on the 

data distribution (i.e., Gaussian) of the properties to be simulated, thereby avoiding the 

intermediate step of a data transformation of the distribution of the properties to be simulated. 

Rather, the marginal and joint distribution as inferred from the experimental data are used in 

the simulation procedure. The use of non-Gaussian stochastic sequential co-simulation 
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techniques allow a better reproduction of the relationship between variables as retrieved from 

the available direct measurements, especially for complex and highly nonlinear relationships 

between primary geophysical and secondary petrophysical properties related to the 

geophysical measurements used in the inversion procedure, electromagnetic induction and 

direct-current resistivity measurements. 

 

Figure 5.1 Schematic representation of the iterative geostatistical joint inversion method using FDEM 

and ERT data. 

As we rely on stochastic sequential simulation and co-simulation, all the subsurface models 

generated during the iterative procedure, reproduce exactly the values of the borehole data at 

their locations, the global marginal and joint distribution of EC and MS, and the imposed spatial 

continuity pattern (i.e., the variogram models for each property individually). 

5.2.2 FDEM forward model and sensitivity analysis 

The forward model F maps the model (𝐦) into the data (𝐝𝐨𝐛𝐬) domain. Thus, a forward model 

is necessary to calculate the theoretical FDEM instrument response, existing in two 

components – the in-phase (IP) and quadrature-phase (QP) – for a given subsurface 

distribution of EC and MS. The FDEM forward model can be formulated in 1D, 2D or 3D (e.g., 

Auken and Christiansen, 2004, Cox and Zhdanov, 2008, Farquharson et al., 2003), to 

simultaneously address EC, both EC and MS or even EC, MS and dielectric permittivity. 

The proposed geostatistical joint inversion method uses a forward model that calculates the 

theoretical 1D normalized EM response, expressed in IP and QP components, of a small loop-

loop system, that is characterized by one transmitter coil and one or multiple receiver coils 

(Hanssens et al., 2019). This forward model considers a FDEM system positioned at the 

surface of an n-layered subsurface model, that accounts for EC, MS and dielectric permittivity. 

This forward model uses Hankel functions, numerically calculated by means of a Guptasarma 
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and Singh digital filter (Guptasarma and Singh, 1997), to determine a superposition of Bessel 

functions of the zeroth and/or first order that model the EM responses.  

The sensitivity modelling represents how sensitive the forward model is toward changes of a 

physical property 𝐦 (i.e., EC) at a specific layer 𝑛 of the layered half-space. The sensitivity 

modelling calculates, with the corresponding forward response, the vertical sensitivity 

distribution related to each physical property within the considered layered model.  

After this step, we obtain a set of Ns responses of IP and QP per coil configuration, and the 

corresponding vertical sensitivity profiles. A detailed description of the FDEM forward model is 

shown in Section 2.2.2. 

5.2.3 ERT forward model 

The forward model used in the proposed iterative geostatistical joint inversion method to 

compute Ns synthetic apparent resistivity models from the previously generated electrical 

conductivity geostatistical realizations is a two and a half-dimensional forward model 

(Pidlisecky and Knight, 2008). 

In ERT surveys, a series of known currents are injected in the ground using two current 

electrodes, then a series of voltage measurements are obtained in two other electrodes. 

Poisson’s equation (Eq. 5.2) can be used to describe the electric potential field generated when 

a current passes across an electrode dipole: 

−𝛻 ∙ (𝜎𝛻𝜙𝑝) = 𝐼(𝛿(𝑟 − 𝑟+) −  𝛿(𝑟 −  𝑟−)),    (5.2) 

where 𝜎 is the electrical conductivity [M-1L-3T3I2], 𝜙𝑝 is the potential field [ML2T-3I-1], 𝐼 is the 

input current [I], 𝛿 is the Dirac delta function, and 𝑟+ and 𝑟− are the locations of the positive 

and negative current electrodes, respectively. To solve numerically Eq. (5.2) for the electric 

potential, 𝜙𝑝, numerical gradient, and divergence approximations are required. Once 

numerical finite difference operators have been derived for gradient and divergence, Eq. 5.2 

can be written in matrix notation as: 

(𝐃𝐒(𝜎)𝐆)𝜙̂ = 𝐀(𝜎)𝜙̂ = 𝑞,     (5.3) 

where 𝐃 is the divergence matrix, 𝐒(𝜎) is a diagonal matrix containing the electrical 

conductivity values, 𝐆 is the gradient matrix, 𝜙̂ is a vector of electric potentials, 𝐀(𝜎) is the 

combined forward operator, and 𝑞 is a vector containing the current electrode pairs (Pidlisecky 

and Knight, 2008). Equation (5.3) is solved to yield the potential field: 

𝜙̂ = 𝐀−1(𝜎)𝑞.      (5.4) 
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A vector of electric potential values for the cells in the model is the result of Eq. (5.4). Potential 

differences can be calculated across each measurement pair, from the known locations of the 

survey potential electrodes. To calculate apparent resistivities (𝜌𝑎𝑝𝑝), these measurements are 

divided by the input current 𝐼 and then multiplied by a specific geometric factor K for each 

survey configuration: 

𝜌𝑎𝑝𝑝 =
Δ𝜙̂

𝐼
𝐾.      (5.5) 

The geometric factor (𝐾) depends on the arrangement of the four electrodes and 

corresponding acquisition geometry (i.e., depends on the distance between each electrode 

and the measurement). Is there is no topography, the conventional formula of 𝐾 can be used 

to calculate the apparent resistivity (Loke, 2018): 

𝐾 =  
2𝜋

1

𝑟𝐶1−𝑃1
− 

1

𝑟𝐶1−𝑃2
−

1

𝑟𝐶2−𝑃1
+

1

𝑟𝐶2−𝑃2

,    (5.6) 

where 𝑟𝐶1−𝑃1 is the distance between current electrode C1 and potential electrode P1, 𝑟𝐶1−𝑃2 

is the distance between current electrode C1 and potential electrode P2, 𝑟𝐶2−𝑃1 is the distance 

between current electrode C2 and potential electrode P1, and 𝑟𝐶2−𝑃2 is the distance between 

current electrode C2 and potential electrode P2. 

5.2.4 Comparison and stochastic model optimization 

The model optimization is achieved by the maximization of an objective function that measures 

the similarity coefficient between synthetic and observed FDEM and ERT data (Eq. 5.7 and 

5.10, respectively). For the FDEM data, that is based on the GEMI method (Chapter 2). The 

similarity coefficient (𝐒) is calculated per coil configuration, tcoils (i.e., the distance between 

transmitter and receivers and the orientation of the coils), between the Ns synthetic IP and QP 

responses obtained for each pair of EC and MS models and the corresponding observed IP 

and QP data: 

𝐒j,t =
2∗∑ (𝐱s

t ∗𝐲s
j,t

)N
s=1

∑ (𝐱s
t )

2N
s=1 +∑ (𝐲s

j,t
)N

s=1

2    ,    j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,   (5.7) 

where 𝐱 and 𝐲 are the real and synthetic QP (or IP) data with N samples. The negative values 

of 𝐒 are truncated at zero. This metric avoids an objective function with two terms, and the 

need of user-defined parameters to weight each term. 𝐒 is not computed for the entire series 

of data but along a set of non-overlapping windows, which are randomly created at the 

beginning of each iteration with different sizes and positions. Each 𝐒 computed for each grid 

location is then weighted in depth by the normalized sensitivity curves of each coil configuration 
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resulting from the FDEM forward model (Eq. 5.8 and 5.9). In the synthetic and real case 

applications of the joint inversion method proposed, assumption have been made that EC is 

directly dependent on QP and MS on IP (alternative assumption might be considered) 

SEC
j,t = 𝑠𝑒𝑛𝑠𝐸𝐶(z)j,t ∗ 𝐒j,t,   j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,  (5.8) 

SMS
j,t = 𝑠𝑒𝑛𝑠𝑀𝑆(𝑧)j,t ∗ 𝐒j,t,   j = 1, … , Ns    𝑎𝑛𝑑   t = 1, … , tcoils,  (5.9) 

where 𝑠𝑒𝑛𝑠𝐸𝐶 and 𝑠𝑒𝑛𝑠𝑀𝑆 are the sensitivity analysis of each FDEM data at each location within 

the inversion grid. A more detailed description of the model optimization using FDEM data can 

be found in Section 2.2.3. 

For the ERT data, the similarity coefficient (𝐒𝐸𝑅𝑇) is calculated between the Ns apparent 

resistivity computed from each EC model using the forward model described in Section 5.2.3, 

and the observed ERT data, using a non-overlapping moving window that visits all the 

inversion grid locations: 

𝐒𝐸𝑅𝑇
𝑗

=
2∗∑ (𝐱s∗𝐲s

j
)N

s=1

∑ (𝐱s)2N
s=1 +∑ (𝐲s

j
)N

s=1

2    ,    j = 1, … , Ns,    (5.10) 

where 𝐱 and 𝐲 are the observed and synthetic apparent resistivity, respectively. The width and 

height of the moving window is randomly generated at the beginning of each iteration to avoid 

biasing the results from iteration to iteration. 𝐒𝐸𝑅𝑇 is bounded between -1 and 1, but negative 

values are truncated at zero. 

The selection of the maximum similarity coefficient in both data domains is performed after 

computing a linear interpolation between 𝐒𝐸𝑅𝑇 and all the SEC, for each coil configurations used, 

at each location within the inversion grid. The samples of EC, corresponding to a given EC 

geostatistical realization, that originated the maximum similarity coefficient interpolated 

between the two methods, are stored together with the maximum similarity coefficient in two 

auxiliary arrays. These arrays are used as conditioning information in the subsequent iteration. 

The samples of MS corresponding to a given MS geostatistical realization that originated the 

highest SMS
j,t are also stored in an auxiliary volume. 

The auxiliary volumes of EC and MS, and the corresponding similarity coefficients volumes, 

are used as secondary variable for the stochastic sequential co-simulation of a new set of EC 

and MS models in the subsequent iteration. The magnitude of the maximum similarity 

coefficient determines the variability of the new ensemble of EC and MS models. The higher 

the maximum similarity coefficient is, the less variable the new ensembles at each location 

within the inversion grid will be. For locations associated with S~1 the new ensemble of co-
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simulated models of EC (and MS) will be similar to the ones corresponding to the auxiliary 

volumes. This model update approach ensures the convergence of the geostatistical FDEM 

data inversion from iteration to iteration. The proposed iterative geostatistical joint inversion 

method for FDEM and ERT data may be summarized in the following sequence of steps 

(Figure 5.1): 

i) Simulation of two ensembles of Ns models of EC and MS given borehole data and a 

calibrated variogram model computed from these borehole data, with stochastic 

sequential simulation (Soares, 2001) and co-simulation with joint probability 

distributions (Horta and Soares, 2010); 

ii) Calculation of the Ns synthetic FDEM data for each pair of models simulated in i) using 

a FDEM forward model. In the application examples shown below we use the 1D 

approximation proposed by Hanssens et al. (2019); 

iii) Calculation of the Ns synthetic ERT data for each EC model simulated in i) using a ERT 

forward model. In the application examples shown below we use the 2D approximation 

proposed by Pidlisecky and Knight (2008); 

iv) Compute the local SEC and SMS between true and synthetic FDEM data weighted in 

depth by the normalized sensitivity curves of each coil configuration resulting from the 

FDEM forward model;  

v) Compute the local 𝐒𝐸𝑅𝑇 between true and synthetic ERT data;  

vi) Compute the maximum similarity coefficient for EC by interpolating 𝐒𝐸𝑅𝑇 and SEC at 

each location within the inversion grid; 

vii) Build four auxiliary volumes by selecting the EC and MS traces (i.e., vertical column of 

grid cells) that ensure the highest S from each property at a given iteration. Store the 

corresponding S values; 

viii) Generate a new ensemble of EC and MS models using co-DSS and the auxiliary 

volumes resulting from vii) as secondary variables. All models of EC and MS generated 

during the iterative geostatistical joint inversion are conditioned locally by existing 

borehole data for EC and MS. They reproduce the global marginal and joint 

distributions between EC and MC as inferred from the borehole data and a pre-defined 

spatial continuity pattern as imposed by a variogram model;  

ix) Iterate and repeat steps ii-viii, while the global convergence of the method reaches a 

pre-defined threshold of maximum similarity. 
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The proposed iterative geostatistical joint inversion method of FDEM and ERT data is flexible 

and can be parameterized for all possible coil configurations that are considered in the FDEM 

survey and/or the configurations possible in a ERT survey. Alternative forward models can be 

parametrized.  

5.3 Synthetic case application 

5.3.1 Data set description 

A realistic 3D synthetic data set (Narciso et al., 2022) was used as benchmark for the proposed 

iterative geostatistical joint inversion methodology. The data set was modelled based on 

geological samples collected at a mine tailing disposal site in Portugal (Panasqueira) and 

laboratory measurements of porosity and particle density. From these physical properties and 

using stochastic sequential simulation (Deutsch & Journel, 1998), we generated a three-

dimensional synthetic porosity subsurface model, with a dimension of 150 by 200 by 4 meters 

with a cell size of 0.5 m by 0.5 m by 0.1 m. Water content was then generated with stochastic 

sequential co-simulation (Deutsch & Journel, 1998) conditioned to the porosity model. EC and 

MS models were then derived from these 3D physical property models and the Archie equation 

(Archie, 1942). From the EC and the MS models, nine locations were selected to represent 

synthetic boreholes, that were used to condition the inversion procedure and to model the 

spatial structure imposed via the variogram model.  

The corresponding observed FDEM data were obtained using a 1D forward model (Hanssens 

et al., 2019) and replicating a commonly used sensor for this type of near-surface surveys. 

More particularly, data from a DUALEM-421S sensor were mimicked, including two loop-loop 

coil orientations, a horizontal coplanar (HCP) and a perpendicular one (PRP), and 3 offsets 

per coil orientation, 1, 2 and 4 meters for HCP and 1.1, 2.1 and 4.1 meters for PRP.  

The observed apparent resistivity data along the transect randomly selected and used as true 

ERT data during the application of the joint inversion method, was calculated considering a 

Wenner-Schlumberger acquisition array (e.g., Loke 2018) composed by 412 electrodes 

spaced 0.5 m and solving the 2.5D forward model to yield the potential field, following 

Pidlisecky and Knight (2008). The same forward models used to calculate the observed FDEM 

and the true apparent resistivity field was used as part of the inversion. Therefore, in this 

application example we assume that no uncertainty is considered in the forward model, which 

might be a strong assumption in real case applications. 
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5.3.2 Results 

The results obtained with the proposed iterative geostatistical joint inversion method for FDEM 

and ERT data are illustrated for the 2D transect of EC and MS that intersects nine boreholes 

(Figure 5.2). 

 

Figure 5.2 True electrical conductivity (left) and magnetic susceptibility (right) and location of the 9 

boreholes providing conditioning data of the iterative geostatistical joint inversion method. 

The convergence of the iterative geostatistical joint inversion method with respect to the 

reproduction of the model parameters is assessed by calculating the pointwise mean models 

of EC and MS computed from all the realizations generated at the last iteration, which is 

equivalent to the maximum a posteriori model from a Bayesian geophysical inversion (Bobe, 

2020). Although the reproduction of the true small-scale heterogeneities cannot be evaluated 

by these models due to the smoothing effect of the e-type mode, the predicted and true EC 

and MS models show similar large-scale spatial patterns and are sensitive to the high and low 

values of true EC and MS (Figures 5.3b and 5.4b).  

The small-scale differences between the true and predicted EC and MS models and the 

relationship with depth and sensitivity loss of the predicted solutions are also observed by 

calculating the pointwise variance models from the ensemble of EC an MS models generated 

at each iteration (Figures 5.3c, 5.3d, 5.4c, 5.4d). As expected, in the first iteration the spatial 

distribution of the variance for both properties is only dependent on the distance to the locations 

of the borehole data. The pointwise variance models of EC and MS computed from models 

predicted during the last iteration of the geostatistical joint inversion, shows the influence of 

each geophysical data and the sensitivity provided by the FDEM forward model (Figures 5.3d, 

5.4d). With the observed FDEM and ERT data assimilated in the models at the last iteration, 

the spatial distribution of the pointwise variance model of EC shows lower variance values 

along all the grid model and an influence of the sensitivity provided by the FDEM forward model 

together with the configuration of the ERT survey (Figure 5.3d). The predictions about MS are 

less sensitive at depth, with the lack of ERT data constraint in the MS predicted models, along 

with the shallow sensitivity provided by the FDEM forward model (higher dependence on the 

coil configurations used). This is demonstrated in spatial pattern of the pointwise variance MS 
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model as the higher variance values are mainly located in the deeper part of the model (Figure 

5.4d). 

 

Figure 5.3 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean 

of all the EC models computed in the last iteration; c) pointwise variance of all the EC models 

computed in the first iteration; d) Pointwise variance of all the EC models computed in the first 

iteration. Vertical dot and blue lines indicate the location of the borehole data. 

 

Figure 5.4 a) Pointwise mean of all the MS models computed in the first iteration; b) pointwise mean 

of all the MS models computed in the last iteration; c) pointwise variance of all the MS models 

computed in the first iteration; d) Pointwise variance of all the MS models computed in the last 

iteration. Vertical dot and blue lines indicate the location of the borehole data. 

The proposed iterative geostatistical joint inversion method reproduces the true EC models 

and converge to the true solution from the first iteration (Figure 5.5a) to the last iteration (Figure 

5.5b), with the residuals between the true EC model and one EC realization reducing along 

the iterations (Figures 5.5c and 5.5d).  
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Figure 5.5 a) Histograms of the true EC and the pointwise mean of all the EC models computed in 

the first iteration; b) Histograms of the true EC and the pointwise mean of all the EC models computed 

in the last iteration; c) Histograms of the true EC and the residuals of the pointwise mean of all the 

EC models computed in the first iteration; d) Histograms of the true EC and the residuals of the 

pointwise mean of all the EC models computed in the last iteration. 

The misfit between observed and predicted FDEM data, for both IP and QP components is 

shown in Figures 5.6 to 5.9. For all coil configurations considered, the match between observed 

and predicted IP and QP responses increases from the first to the last iteration. The uncertainty 

envelope, as represented by the synthetic response of the ensemble of models in each 

iteration, narrows and encloses the observed IP and QP data as the iterative procedure 

advances. Although the uncertainty envelope of all coil configurations in the last iteration well 

encloses the true FDEM data, a better match is reached in QP responses and in smaller coil 

distances. This is due to a more stable signal in QP responses and a higher sensitivity to small-

scale heterogeneities at shallow depths when the coils are closest to each other, but also to 

the influence of ERT data in a faster convergence of the EC inversion to the true solution. EC 

is directly dependent on QP and MS on IP is shown here.  
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Figure 5.6 Comparison between observed (red line) and predicted QP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP 

orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM 

values predicted at a given iteration. In the left column the predictions at the end of the first iteration 

are represented and in the right column the predictions at the end of the last iteration are represented. 

Vertical lines indicate the location of the borehole data. 

 

Figure 5.7 Comparison between observed (red line) and predicted QP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for perpendicular coil configurations 

(PRP orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and 
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maximum FDEM values predicted at a given iteration. In the left column the predictions at the end of 

the first iteration are represented and in the right column the predictions at the end of the last iteration 

are represented. Vertical lines indicate the location of the borehole data. 

As expected, the predicted QP and IP responses at the borehole locations are exactly 

reproduced as the predicted EC and MS models are locally conditioned by the borehole data. 

 

Figure 5.8 Comparison between observed (red line) and predicted IP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP 

orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM 

values predicted at a given iteration. In the left column the predictions at the end of the first iteration 

are represented and in the right column the predictions at the end of the last iteration are represented. 

Vertical lines indicate the location of the borehole data. 
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Figure 5.9 Comparison between observed (red line) and predicted IP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS 

models generated at a given iteration (dashed dark blue line) for perpendicular coil configurations 

(PRP orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and 

maximum FDEM values predicted at a given iteration. In the left column the predictions at the end of 

the first iteration are represented and in the right column the predictions at the end of the last iteration 

are represented. Vertical lines indicate the location of the borehole data. 

The misfit between observed and predicted ERT data can be assessed in Figures 5.10. The 

figures show how the match between observed and predicted apparent resistivity increases 

from the first to the last iteration. The predicted and observed apparent resistivity show similar 

large-scale spatial patterns and match the high and low values (Figures 5.10a and 5.10c). 

However, it is observed an increase in small-scale differences between the true and predicted 

apparent resistivity, particularly below the 3 m depth, arising from sensitivity loss of ERT data 

at depth.  

The reproduction of the observed apparent resistivity from the first to the last iteration of the 

proposed iterative geostatistical joint inversion method can also be assessed by the residuals 

computed between the observed data and the predicted data from a single geostatistical 

realization generated during the last iteration (Figures 5.10d and 5.10e).  
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Figure 5.10 Comparison between observed and predicted apparent resistivity data; a) Observed 

apparent resistivity data; b) Predicted apparent resistivity data computed in the first iteration; c) 

Predicted apparent resistivity data computed in the last iteration: d) Histograms of the observed 

apparent resistivity data, one predicted apparent resistivity data computed in the first iteration and 

the corresponding residuals between both; e) Histograms of the observed apparent resistivity data, 

one predicted apparent resistivity data computed in the last iteration and the corresponding residuals 

between both. 

5.4 Real case application 

5.4.1 Data set description 

The proposed iterative geostatistical joint inversion method of FDEM and ERT data was 

applied to a real data set obtained in the nature reserve of Doelpolder Noord, situated north of 

Antwerp harbour, on the left bank of the Scheldt River (Verhegge et al., 2016a). The site is 

characterized by topsoils that range from heavy clay to clay with moderately bad to bad 

drainage, covering Pleistocene sands with the top between 4- and 9-meter depth. Manual 

coring and geophysical data identified a river dune buried between 2 and 6 m deep, flanking a 

large depression with the base reaching up to 9 m below the surface. The dune is characterized 
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by low values of FDEM response and higher resistance and is less conductive compared to 

the surrounding subsurface (Figures 5.11 and 5.15). 

 

Figure 5.11 Map of the FDEM survey with QP data (ppm) for the HCP coil configuration with 4 m 

offset. The black line represents the location of the transect of Figures 5.12 to 5.15. Green points 

represent the locations of the available borehole data (blind well in red). Coordinates in Belgian 

Lambert’72 coordinate system. 

FDEM data was collected on August 2013 using a DUALEM-421S (DUALEM Inc., Milton, 

Canada) low-frequency domain EMI sensor, recording both IP and QP response to an induced 

field with a frequency of 9 kHz (Verhegge et al., 2016a). The data were registered in HCP coil 

configuration with 1, 2 and 4 m separation between coils, and PRP configuration with 1.1, 2.1 

and 4.1 m between coils. The survey was carried out using a quad-pulled sled, with the sensor 

elevated 16 cm from the surface, along parallel lines every 3 m, and the responses registered 

at 8 Hz while driving 7-8 km/h. The pre-processing of the FDEM data included: i) the correction 
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for the spatial offsets between the position and sensor data, following the procedure described 

in Delefortrie et al. (2016); ii) the correction for signal drift – a relative calibration, following the 

procedure in Delefortrie et al. (2014b); and iii) an absolute calibration per coil configuration to 

eliminate the presence of signal offsets, comparing the forward modelled responses at 

locations where in-situ measurements of EC and MS were available with the measured FDEM 

responses. 

Electrical resistivity data were collected using an AGI Supersting R8 with an inverse 

Schlumberger configuration, allowing the use of multi-channel possibilities and increasing the 

survey speed (Verhegge et al., 2016b). The electrodes were positioned 2 m apart to obtain an 

estimated 1 m spatial resolution (Baines et al., 2018). The ERT data were despiked and 

concatenated using RES2Dinv software (Loke, 2018). No topographical correction was 

needed because the relatively flat topography. 

A series of conductivity cone penetration tests (CPT-C), i.e., direct measurements of electrical 

conductivity, were carried out using a dielectric cone, a frequency-domain method at 20MHz 

(Hilhorst, 1998), reaching the 10-meter depth each one. 

To test the iterative geostatistical joint inversion method, a 260 meter transect was selected 

containing maximal subsoil variability including the top of a Pleistocene micro-sand ridge 

(buried about 2 m deep), FDEM data, a 2D ERT data profile and 4 CPT-C (Figure 5.11). 

Although the iterative geostatistical joint inversion can predict EC and MS inversion models in 

the same inversion application, and since MS was not measured by direct measurements of 

borehole data, the inverse modelling of MS and the prediction of IP component will not be 

assessed in the application of the iterative joint inversion method to this real case data set. 

5.4.2 Results 

To assess the performance of the proposed iterative geostatistical joint inversion method of 

FDEM and ERT data, Figures 5.12 show the pointwise mean and variance models of the 

ensemble of EC models predicted at the first and the last iterations. The pointwise variance of 

EC models demonstrates the influence of including the sensitivity of the forward model to the 

model parameters, increasing in depth as the sensitivity of the FDEM decreases, and the 

constraint of the ERT data and survey configuration in the predicted EC models, decreasing 

the variance of the ensemble, in line with the results achieved in the synthetic case application. 

With the FDEM coil configurations used, the constraint of the FDEM data in the inversion 

results is limited to approximately 5 meters depth in the predicted EC models. Two distinct 

regions can be clearly observed, a shallower one with lower electrical conductivity values and 

a deeper one more conductive. 
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Figure 5.12 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean 

of all the EC models computed in the last iteration; c) pointwise variance of all the EC models 

computed in the first iteration; d) Pointwise variance of all the EC models computed in the first 

iteration. Vertical magenta lines indicate the location of the borehole data. The vertical red dashed 

line represents the location of the blind well. 

The performance of the proposed methodology can also be assessed by the match between 

observed and predicted FDEM data (Figures 5.13 and 5.14).  

 

Figure 5.13 Comparison between observed (red line) and predicted QP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC models 

generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP 

orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM 

values predicted at a given iteration. In the left column the predictions at the end of the first iteration 

are represented and in the right column the predictions at the end of the last iteration are represented. 

Vertical grey lines indicate the location of the borehole data. The vertical dashed line represents the 

location of the blind well. 
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The predicted FDEM responses were calculated from the ensemble of all models generated 

during the first and last iterations, for all coil configurations. The increasing convergence from 

iteration-to-iteration is illustrated by the envelope of the synthetic FDEM responses that gets 

narrower and closer to the observed data as the iterative procedure moves froward. In general, 

the predicted QP signal component of the FDEM data for all coil configurations match the 

recorded field data. 

 

Figure 5.14 Comparison between observed (red line) and predicted QP data for all models generated 

at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC models 

generated at a given iteration (dashed dark blue line) for horizontal coil configurations (PRP 

orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and maximum 

FDEM values predicted at a given iteration. In the left column the predictions at the end of the first 

iteration are represented and in the right column the predictions at the end of the last iteration are 

represented. Vertical grey lines indicate the location of the borehole data. The vertical dashed line 

represents the location of the blind well. 

The misfit between observed and predicted ERT data can be assessed in Figures 5.15. The 

match between predicted and observed apparent resistivity increases from iteration to iteration 

and present similar large-scale spatial patterns, reproducing the high and low values (Figures 

5.15a to 5.15c). The spatial reproduction of the Late Glacial (river) dune, characterized by high 

values of apparent resistivity, is also detected in the predicted apparent resistivity.  
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Figure 5.15 Comparison between observed and predicted apparent resistivity data; a) Observed 

apparent resistivity data; b) Predicted apparent resistivity data computed in the first iteration; c) 

Predicted apparent resistivity data computed in the last iteration; d) Biplot between the observed 

apparent resistivity and the predicted apparent resistivity data computed in the first iteration; e) Biplot 

between the observed apparent resistivity and the predicted apparent resistivity data computed in 

the last iteration. Vertical grey lines indicate the location of the borehole data. The vertical dashed 

lines represent the location of the blind well. 

The quality of the inversion results and the convergence of the data in both domains can be 

assessed by computing same correlation metrics (e.g., the global Pearson correlation 

coefficient (CC)) between the observed ERT data and the predicted ERT data computed from 

each realization, and the root-mean-square errors (RMSE) between the observed FDEM data 

and the predicted QP component from each realization (Figure 5.16). In both data domains, 

the convergence to the observed data is achieved, with CC of 0.90 in ERT data in the last 

iteration, and lower RMSE values of FDEM data from iteration to iteration. 



Chapter 5 

112 
 

 

Figure 5.16 a) Global correlation coefficient of the apparent resistivity data computed in all iterations; 

b) Global root-mean-square error of the QP data computed in all iterations.  

5.5 Discussion 

The proposed iterative geostatistical joint inversion method predicts near-surface EC and MS 

models from survey FDEM and ERT data. The inversion method is based on geostatistical 

simulation and co-simulation as model perturbation and stochastic update techniques. 

Therefore, the predicted models can be conditioned locally to existing borehole data and a 

spatial continuity pattern as described by a variogram model. The perturbation of the model 

parameters at each iteration leverages the sensitivity analysis provided by the FDEM forward 

model (i.e., the assimilation of the recorded FDEM data accounts for the sensitivity in depth 

per property as provided by the forward model) and the local predicted by the ERT data at the 

deeper depths.  

The proposed joint inversion method is based on a 1D FDEM forward model and a 2D ERT 

forward model. Using a one- and two-dimensional forward models represents a limitation when 

computing the electromagnetic and direct-current resistivity response, particularly in highly 

complex geological settings, as the propagation of the electromagnetic field and the injected 

electrical current into the subsurface flows three-dimensionally through preferential paths that 

could bypass some structures, imposing artifacts in a two-dimensional representation. In these 

cases, alternative three-dimensional forward models could be used, but the computational 

costs of the proposed methodology would increase. This hard assumption is somehow 

alleviated in the proposed methodology as the model perturbation is global for the entire grid 

at once (i.e., in 2D or 3D depending on the data availability). 

The synthetic application example illustrates the potential of the proposed joint inversion 

method to predict a reliable near-surface EC model. However, this is a relatively simple 
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example as the same forward model used to create the observed data was used in the 

inversion workflow. The potential of the joint inversion method compared to simple geophysical 

inversion methods can be assess by testing the GEMI method (Chapter 2) in the same 

synthetic data set used with the joint inversion method, using the same inversion and modeling 

parameterization along with the same FDEM data. The EC realizations predicted from the 

GEMI method capture the spatial continuity of the true EC model (Figure 5.2) and reproduce 

the high and low local values of EC (Figure 5.17b). However, from the pointwise variance of 

the EC ensemble in the first and last iteration, a higher spatial uncertainty and small-scale 

variability of EC is predicted below the 2 m depth (Figure 5.17d), in comparison to the EC 

predicted models from the joint inversion method (Figure 5.3d). The increase in the spatial 

uncertainty in depth from the EC predicted models computed by the GEMI method is directly 

related to the sensitivity decrease of FDEM data in depth along with the lack of ERT data to 

converge the results to the true solution. 

 

Figure 5.17 a) Pointwise mean of all the EC models computed in the first iteration using GEMI; b) 

pointwise mean of all the EC models computed in the last iteration using GEMI; c) pointwise variance 

of all the EC models computed in the first iteration using GEMI; d) Pointwise variance of all the EC 

models computed in the first iteration using GEMI. Vertical magenta lines indicate the location of the 

borehole data. Vertical dot and blue lines indicate the location of the borehole data. 

The same conclusions arise from computing the residuals between the pointwise mean model 

computed in the last iteration and the reference model of EC (Figure 5.18). The GEMI method 

predicted EC models with more spatial uncertainty and difference to the true solution. The 

residuals from the pointwise mean computed from the EC ensemble models predicted from 

the joint inversion method are also lower than the ones predicted by the GEMI method (Figures 

5.18c and 5.18d).  
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Figure 5.18 Two-dimensional difference between the pointwise mean model computed in the last 

iteration and the reference model of EC (Figure 5.2), using: a) iterative joint geostatistical inversion 

method; b) GEMI method. c) Histograms of the true electrical conductivity, the pointwise mean of all 

the EC models computed in the last iteration and the corresponding residuals between both, using 

the iterative joint geostatistical inversion method; d) Histograms of the true electrical conductivity, the 

pointwise mean of all the EC models computed in the last iteration and the corresponding residuals 

between both, using GEMI method. 

The potential of the joint inversion method can also be assessed by applying the GEMI method 

in the same real data set of Doelpolder Noord, using the same inversion and modeling 

parameterization, and removing the same borehole information in the iterative modelling. The 

predicted EC models from this GEMI application are conditioned to the spatial continuity 

pattern imposed by a variogram model, but the perturbation of the model parameters is 

dependent on the sensitivity analysis of the FDEM data, which decreases significantly below 

the 5 m depth. This effect can be observed by computing the pointwise mean and variance of 

the EC models predicted by the GEMI method (Figure 5.19). The spatial uncertainty only 

decreases in the shallower grid locations of the EC models in the last iteration, here the FDEM 

data perturb the model parameters (Figure 5.19d).  

By testing both inversion methods in the real case data set without using one of the boreholes 

information, we evaluate the predicted EC model locally at the location of the blind well (Figures 

5.11 and 5.20). Despite the borehole information does not reaches the full depth of the 

inversion model, the predicted near-surface properties from the joint inversion method do 

match the observed one at the last iteration. 
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Figure 5.19 Inversion realizations of Doelpolder data set obtained by GEMI method: a) Pointwise 

mean of all the EC models computed in the first iteration; b) pointwise mean of all the EC models 

computed in the last iteration; c) pointwise variance of all the EC models computed in the first 

iteration; d) Pointwise variance of all the EC models computed in the first iteration. Vertical magenta 

lines indicate the location of the borehole data. The vertical red dashed line represents the location 

of the blind well. 

 

Figure 5.20 True and predicted values of EC along the blind well test for: a) EC during the first 

iteration obtained by the iterative joint geostatistical inversion method; b) EC during the last iteration 

by the iterative joint geostatistical inversion method; c) EC during the last iteration by the GEMI 

method. 

A comparison between the predicted EC results in the blind well location computed by both 

inversion methods, demonstrated that the iterative geostatistical joint inversion method can 

predict the EC model decreasing the uncertainty at depth, at opposite to the GEMI method 

below the 5 m depth (Figure 5.20b and 5.20c). The predicted EC values from the joint inversion 
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method exhibit a linear correlation to the true EC values from the borehole data that was not 

used in the inversion procedure (Figure 5.21).  

 

Figure 5.21 Biplot along the blind well test between the observed EC and: a) the predicted EC 

obtained by GEMI method for the first iteration; b) the predicted EC obtained by GEMI method for the 

last iteration; c) the predicted EC obtained by the iterative geostatistical joint inversion method for the 

first iteration; d) the predicted EC obtained by the iterative geostatistical joint inversion method for 

the last iteration. 

5.6 Conclusion 

This Chapter introduces an iterative geostatistical joint inversion method that represents a 

contribution to probabilistic joint inversion of DC resistivity data and FDEM data. The proposed 

iterative joint inversion method can predict the spatial distribution of EC and MS simultaneously 

(although the models of MS are only conditioned to the FDEM data).  

The predicted FDEM and ERT data computed from each EC realization of the joint inversion 

match better the observed data of each geophysical method and reproduces better the true 

electrical conductivities, than the models obtain from the FDEM inversion. 

The joint inversion methodology was first validated using a developed synthetic data set 

rendering realistic spatial distributions of EC and MS and then applied to a real data set 

containing FDEM data, ERT data and CPT-C (direct measurements of EC). The pointwise 

mean and variance models of predicted EC from both application examples demonstrated that, 

not only the joint inversion methodology reproduces exactly the histograms retrieved from the 
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borehole data, but also presented improvements in the spatial continuity reproduction and 

uncertainty at depth, when compared to the separated FDEM inversion method.  
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6.1 Conclusions 

The main goal of this thesis was to develop and implement an iterative geostatistical 

geophysical inversion framework able to predict the subsurface spatial distribution of electrical 

conductivity and magnetic susceptibility at high spatial resolution from FDEM and ERT data. 

All the methodologies proposed herein were validated in a realistic synthetic data set and 

applied in real case examples. As main conclusion from these application examples, we can 

highlight that the geostatistical framework can handle the different spatial resolution from the 

geophysical and borehole data, that the proposed methodologies could cope with 

heterogenous subsurface environments, predicting local small-scale variability, while 

assessing simultaneously the uncertainty of the predicted models. The main conclusions of 

the four objectives of the thesis follow below. 

Objective one: Realistic synthetic data set. We developed a realistic synthetic data set 

based on direct and laboratory measurements obtained from samples acquired in a mine 

tailing. These data can be used to benchmarking different geophysical inversion methods that 

have the potential to be applied in complex and heterogeneous near-surface environments. 

The work proposed in Bobe et al. (2019) (Chapter 3) is an illustrative example. This data set 

proved to be useful to test the sensibility of the proposed inversion methods to discontinuities 

in the physical properties and to capture their spatial continuity in highly heterogeneous 

environments. It also was useful to validate the proposed inversion methodologies throughout 

this thesis and to compare the corresponding predicted models. The data set is publicly 

available in http://doi.org/10.5281/zenodo.5116420 

Objective two: Iterative geostatistical inversion of FDEM data. We developed and 

implemented an iterative geostatistical FDEM inversion methodology (Chapter 2) that allows 

to simultaneously predict EC and MS and can be applied to characterize complex and 

heterogeneous near-surface deposits of different types and nature. The proposed method was 

validated in the 3D synthetic data set developed under objective one, was tested in a real data 

set containing several archaeological features and strong local IP anomalies and was 

compared to a probabilistic KEG method and their predicted results. The results show the 

ability of the proposed method to reproduce the true EC and MS and the predicted FDEM 

measurements responses well enclosed the true FDEM. The uncertainty of the posterior 

distributions of EC and MS and the FDEM responses computed from the predicted models can 

also be assessed, presenting an advantage compared to deterministic FDEM inversion 

methods. 

http://doi.org/10.5281/zenodo.5116420
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Objective three: Optimization of FDEM inversion. To improve the computational cost of the 

developed iterative geostatistical FDEM inversion method, we proposed a FDEM inversion 

method that performs the inversion in a reduced space without compromising the exploration 

of the model parameter space. We use a FDEM inversion scheme that combines ES-MDA 

with RTD and was able to predict the spatial distribution of EC and MS, in both synthetic and 

real case application examples. In both application examples, the predicted models 

reproduced the measured EC and MS data while allowing to assess the uncertainty of the 

predictions. The proposed methodology has the potential to solve large-scale three-

dimensional problems in near-surface applications. The code of this method is available at: 

https://github.com/theanswer003/ES-RTD-FDEM 

Objective four: Iterative geostatistical joint inversion of FDEM and ERT data. We 

developed and implemented an iterative geostatistical joint inversion method that couples data 

from different geophysical methods. The proposed method combines the benefits of the 

separate inversion methods of small-loop FDEM and direct current resistivity data in a joint 

inversion framework. Using a joint inversion approach, the perturbation of the joint parameter 

space represents improvements over the joint interpretation of the separate inversion. Though, 

most of the joint inversion methods that combine these two geophysical data use deterministic 

frameworks which require to explicitly weight the influence of the different data types. This 

work represents a milestone in the probabilistic joint inversion of FDEM and ERT data, as the 

proposed joint inversion method is, as far as our knowledge go, the first geostatistical joint 

inversion method of FDEM and ERT data, with the flexibility of application in a significant range 

of near-surface activities. From the application examples shown herein, we concluded that the 

proposed joint inversion method presents benefits over the separate inversion methods, 

increasing the accuracy of the predicted EC subsurface models with a better reproduction of 

the true EC models while reducing the uncertainty at the local small-scale, particularly at depth.  

6.2 Future Perspectives 

The iterative geostatistical geophysical inversion methods proposed in this thesis could predict 

three-dimensional models of electrical conductivity and magnetic susceptibility using a one-

dimensional formulation of the FDEM physical forward equations and capturing the spatial 

structure by imposing auxiliary data-based variogram models with vertical and lateral spatial 

correlations. The one-dimensionality of the forward model represents one of the main 

limitations of the proposed methodologies. This could be overcome with numerical solutions 

to 3D forward modelling algorithms, which recently became available in open-source code 

repositories (e.g., Heagy et al., 2017; Werthmüller et al., 2019). Using 3D forward models may 

https://github.com/theanswer003/ES-RTD-FDEM
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allow the GEMI and the joint inversion methods to go beyond in the modelling of complex and 

heterogeneous subsurface environments. However, since the increase in the subsurface 

structure complexity would result in the use of millions of model parameters, this would 

increase the computational burden of the inversion procedure to a point that could become 

unfeasible. Also, resolving the inverse problem of complex subsurface structures using FDEM 

data could imply collecting large data sets of FDEM surveys. Following that demand, FDEM 

instrumentation and data collection has undergone recent advances, with the acquisition of 

large data sets sampled at a high resolution with the use of drones, with particular interest for 

advanced 3D inversion of that data. A line of future research could be the integration of 3D 

forward models in geostatistical FDEM inversion methods and the management of these large 

FDEM data sets using machine learning and deep learning algorithms, following the steps of 

FDEM inversion proposed in Chapter 4. 

A complementary line of research would be to push the boundaries of joint inversion methods 

applied to near-surface heterogeneous environments, integrating more geophysical methods 

that would complementary improve the predicted subsurface physical models. Seismic 

methods have the potential to characterize the interfaces between some subsurface structures 

that, combined with FDEM and direct current resistivity methods, could retrieve more reliable 

numerical models of subsurface physical properties, while simultaneously assessing the 

uncertainty of each data domain. Following this line of research, geophysical data could be 

integrated with remote sensing images to create 3D models in areas where only 2D transects 

of geophysical data are available. This type of spatial data is increasingly abundant, available 

across large areas and easy to access, and can be a great addition to geophysical data, 

particularly FDEM data, contributing to better understanding the subsurface.  

Adding another dimensionality to the subsurface characterization is also a way to go. 

Geophysical time-lapse studies, with repeated geophysical measurements, such as FDEM 

surveys, along the time in the same study area can be used for advanced monitoring and 

characterization of the subsurface. These could be particularly useful in near-surface 

applications of environmental and groundwater contamination, characterizing through time-

lapse FDEM measurements the evolution of the subsurface contamination. The new FDEM 

data in each period could be used in the co-simulation of updated EC and MS predicted 

models. 
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