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SUMMARY

The near-surface beneath our feet is the portion of the Earth that affects and is more impacted
by human activities and yields important mineral and energy resources. It is, therefore, of the
utmost interest to characterize the first meters of the subsurface and to accurately quantify its
physical, structural, chemical, and biological properties. To overcome the limitations of direct
measurements obtained from invasive methods, non-invasive geophysical methods have been
applied in the modelling and characterization of complex and heterogeneous near-subsurface
environments. Particularly frequency-domain electromagnetic (FDEM) induction methods
have become one of the most widely used geophysical methods in near-surface applications
due to their versatility, cost-effectiveness, and data sensitivity to subsurface changes of two

physical properties: electrical conductivity (EC) and magnetic susceptibility (MS).

However, mapping geophysical data into numerical subsurface models concerns solving an
ill-posed and nonlinear geophysical inverse problem with multiple solutions. While
deterministic geophysical inverse solutions allow predicting smooth representations of the
subsurface, they do not account for uncertainties and are unable to directly integrate direct

observations, a probabilistic framework allows overcoming these limitations.

This thesis combines the advantages of FDEM induction measurements with the potential of
probabilistic inversion and introduces a geostatistical FDEM inversion method to
simultaneously model the spatial distribution of the subsurface EC and MS and assess the
uncertainty of the predicted results. The proposed method is benchmarked with an alternative
statistical-based FDEM inversion method. Since probabilistic inversion methods are
computationally demanding when solving for large-scale three-dimensional inverse problems,
the iterative geostatistical FDEM inversion is coupled with random tensor decomposition to
alleviate the computational burden. From a multi-geophysical inversion approach, this thesis
also presents a joint inversion method of electrical and electromagnetic data to reduce the
uncertainty of the predicted subsurface models in near-surface applications. The methods are

illustrated in both realistic synthetic and real application examples.

KEYWORDS: Near-surface modelling, Geostatistical FDEM inversion, FDEM data, Electrical

data, Joint geophysical inversion.
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RESUMO

A subsuperficie debaixo dos nossos pés é a parte da Terra que mais interage com actividades
humanas e que armazena uma parte importante das adguas subterrdneas e recursos minerais.
E, portanto, fundamental caracterizar os primeiros metros da subsuperficie e quantificar com
precisdo as suas propriedades fisicas, estruturais, quimicas e biologicas. Para ultrapassar as
limitacbes espaciais de medi¢Bes directas por métodos invasivos, métodos geofisicos nao
invasivos tém sido aplicados na modelagédo e caraterizacdo de ambientes subsuperficiais
complexos e heterogéneos. Em particular, os métodos de inducdo electromagnética no
dominio da frequéncia (FDEM) tornaram-se um dos métodos geofisicos mais utilizados nestes
depésitos heterogéneos, devido a sensibilidade dos seus dados as alteracdes de duas
propriedades fisicas: a condutividade eléctrica e a susceptibilidade magnética. No entanto,
transformar dados geofisicos em modelos espaciais da subsuperficie implica a resolucéo de
um problema geofisico inverso, que é um problema nao linear com multiplas solugées. A
resolucdo deste problema através de uma abordagem geoestatistica permite combinar
medicdes directas invasivas com dados geofisicos, para assim melhorar os modelos

invertidos.

Combinando as vantagens dos dados FDEM com o potencial das metodologias de inverséo
geoestatistica, esta tese apresenta um método de inversao geoestatistica FDEM para modelar
a distribuicdo espacial das propriedades na subsuperficie e avaliar a incerteza dos resultados
previstos. A metodologia proposta é comparada com outro método probabilistico de inverséo
FDEM. Como os métodos de inversao geoestatisticos sdo computacionalmente exigentes
quando se trata de resolver problemas inversos tridimensionais de grande escala, é
apresentado um método de inversao probabilistico com um algoritmo de aprendizagem
automatica para melhorar a performance computacional. A partir de uma abordagem de
inversdo multi-geofisica, esta tese apresenta também um método de inversdo conjunta de
dados eléctricos e electromagnéticos que visa reduzir a incerteza dos modelos de

subsuperficie previstos. Os métodos apresentados sédo aplicados em casos sintéticos e reais.

PALAVRAS-CHAVE: Modelagdo da subsuperficie, Inversao electromagnética geostatistica,

Dados electromagnéticos, Dados Eléctricos, Inversao geofisica conjunta.
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Chapter 1

1.1 Background

The uppermost tens of meters beneath our feet (i.e., the near surface) are the portion of the
Earth that affects and is most impacted by human activities: from construction to agriculture to
repository of urban and industrial wastes. Also, yields some of our mineral and energy
resources, which are critical to our modern lives. Therefore, it is of the utmost importance to
characterize the near surface and to accurately quantify spatially its physical, chemical, and
biological properties (e.g., Butler, 2005; Everett, 2013). Throughout the past century, mainly
invasive techniques (e.g., boreholes) have been used to investigate and characterize the near
surface. Although useful, invasive techniques are generally expensive to acquire and operate,
impractical to implement in some locations, and provide only sparse and discrete direct
observations with considerable limitations for the spatial characterization of such a dynamic
system as the near surface (Pyrcz and Deutsch, 2014).

The application of non-invasive geophysical techniques in near-surface characterization has
increased considerably during the last decades, as the result of the recent developments on
instrumentation equipment and improved computational capabilities. Also, these non-invasive
geophysical techniques have been proven to be powerful tools in the spatial characterization
of the subsurface properties, since they can acquire indirect, and virtually continuous,
measurements of the physical properties of the subsurface (Minsley et al., 2012). These
factors led to the use of near-surface geophysical techniques in more complex and
heterogenous subsurface environments (e.g., landfill deposits), enabling the measurement of
physical soil properties for an entire area of interest and the characterization of the subsurface

in a spatially comprehensive way.

Electromagnetic methods (EM) have the broadest application range for near-surface
characterization, due to the wide spectrum of instrumental systems and their respective
configurations (Reynolds, 2011). EM methods were developed during the 1920s, with the first
application to imaging the earth through the induction of eddy currents in the subsurface
performed by Karl Sundberg (Sundberg and Hedstroem, 1934).

The following years witnessed an increasing development of induction-based EM equipment,
all featured by one or more transmitter and receiver coils. Due to the ability of acquiring large
data sets with spatially continuous information in a reasonable time frame, along with the
versatility of the acquisition setups, EM surveys have become widely popular (Telford et al.,
1990). Based on the nature and distinct features of the EM signal transmitted, EM methods
can be classified into two main groups: time-domain (TDEM) characterized by a transient

source; and frequency-domain (FDEM) electromagnetic methods characterized by a
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continuous source. With the recent development of small-loop FDEM setups, characterized by
the small distance between the transmitter and the receiver coil(s) within a single equipment,
increasing versatility and efficiency and resulting in faster and more reliable surveys, FDEM
methods have become one of the most widely used geophysical methods in near-surface
characterization. Application examples cover a wide range of areas such as: determination of
soil salinity (e.g., Akramkhanov et al., 2014) and soil compaction (e.g., Al-Gaadi, 2012),
groundwater surveys (e.g., Huang et al., 2017; Paepen et al., 2020) and contamination
detection (e.g., Sainato et al., 2018), archaeological prospection (e.g., Bongiovanni et al.,
2008; De Smedt et al., 2013; Saey, et al., 2016), landfill surveys (e.g., Van De Vijver and Van
Meirvenne, 2016; Van De Vijver, 2017) and soil pollution (e.g., Guérin et al., 2004; Blaha et
al., 2008), geotechnical characterization (e.g., Saey et al., 2015) and geological 3D imaging
(e.g., Monteiro Santos et al., 2011), and unexploded ordnance (UXO) detection (e.g., O’Neill
et al., 2005; Saey et al., 2011). All these FDEM applications examples are characterized by
shallow depths of investigations (~ 4-20 m) and the ability to track lateral and/or vertical

variations of electromagnetic parameters.

FDEM induction measurements can be linked to subsurface electrical conductivity (EC),
magnetic susceptibility (MS) and dielectric permittivity by assuming an infinite homogeneous
halfspace below the FDEM sensor (Hanssens et al., 2019). The spatial distributions of these
properties can be resolved by the variations of the recorded electromagnetic data. Since small-
loop FDEM methods work in low-frequency regimes (far below 10° Hz), the influence of
dielectric permittivity on the acquired FDEM data can be considered negligible as it is only
relevant at high-frequency (Hanssens et al., 2019). As this thesis focuses on methods and
applications that take advantage of small-loop FDEM data, the focus was only on the

investigation of electrical conductivity and magnetic susceptibility.

Despite these recent developments in FDEM methods for near-surface characterization, most
of the potential of these methods has not yet been widely addressed. Particularly, the
guantitative prediction of the near-surface properties from recorded FDEM data (i.e., FDEM
inversion), and how direct and indirect measurements can be integrated in a consistent way,

given their distinct nature.

The standard approach of translating geophysical data into numerical subsurface models is to
solve a geophysical inverse problem (Tarantola, 2005). Opposite to solving a forward problem
(i.e., the theoretical mathematical calculation of synthetic geophysical data from a known set
of model parameters) a geophysical inversion aims at predicting the unknown spatial
distribution of the model parameters. Under the scope of this thesis, the model parameter

space is defined by the electrical conductivity and magnetic susceptibility, through the changes
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imposed by these properties on the observed geophysical data. Geophysical inverse problems
are ill-posed and nonlinear inverse problems with no unique or stable solutions, which arises
from the fact that small differences in the input parameters can produce large differences in
the solutions (Tarantola, 2005). The non-unigueness of the solution is a result of the multiple
parameter configurations that can produce similar data to the one observed, resulting in

uncertain predictions.

Geophysical inverse methods can be categorized as either deterministic or probabilistic. Since
probabilistic approaches are more computationally expensive and require a larger degree of
expertise, the majority of methods currently used to solve a FDEM inverse problem are
deterministic approaches (e.g., Zhdanov, 2002). Deterministic inverse methods rely on
regularization methods to transform an ill-posed into a well-posed problem. These
regularization methods, such as Tikhonov regularization (Tikhonov and Arsenin, 1977),
simplify the inverted solution, predicting a single smooth representation of the subsurface and
ignoring uncertainties about the predictions.

Opposed to a single solution outcome, probabilistic geophysical inversion methods predict the
subsurface model parameters as probability distribution functions. These methods allow
obtaining, or approximating, a posterior probability distribution of the model parameter space.
In these types of methodologies, the non-uniqueness of the geophysical inversion is captured
in the final solution and the uncertainty of the modelling procedure can be assessed. The
growth of computational resources in the last decades allowed the development of probabilistic
geophysical inversion methods and the spread of their application (Grana et al., 2022). Among
these probabilistic methods, iterative geostatistical inversion methods emerge as a powerful
tool to quantify physical subsurface properties, as they provide a framework to data integration
and detailed description of the subsurface spatial heterogeneities (e.g., Azevedo and Soares,
2017; Tylor-Jones and Azevedo, 2022).

The inversion of electromagnetic data using probabilistic methods for modelling the near-
surface physical properties is still underdeveloped and far from being the standard modelling
technique (Bobe, 2020). This is mainly due to the relatively large size of the electromagnetic
data sets, which makes probabilistic approaches computationally expensive, and to the highly
non-linear nature of the forward model and the corresponding computational cost. This thesis
proposes alternative approaches to close the existing gap related to the lack of geostatistical

FDEM inversion methods.

Along with electromagnetic data, electrical tomography near-surface techniques, such as
direct current (DC) resistivity methods, have demonstrated their efficiency to characterize near-

surface heterogeneous environments such as ground water contamination, archaeological
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mapping, or mineral prospecting. These methods are sensitive to subsurface changes of
electrical resistivity (or electrical conductivity) (Reynolds, 2011). These electrical tomography
methods can image the subsurface by deriving the spatial distribution of EC from the
combination of different measurements configurations. Electromagnetic and electrical data are
often acquired jointly but interpreted and modelled separately due to the nonlinearity of the
inverse problem. Nevertheless, inverting both geophysical data sets in a joint inversion
methodology can improve the accuracy of the predicted results due to the differences in the
spatial resolution of both methods and the complementary information about the subsurface
retrieved from each data set (Moorkamp, 2017). However, handling the differences in the
resolution and nature of both methods is not straightforward and prone to uncertainties. This
can be overcome by solving the joint inversion problem in a geostatistical framework. This
thesis presents a multi-geophysical inversion approach, combining FDEM data and direct
current resistivity data, focusing on the advantages of each geophysical method and their
potential to model the spatial heterogeneities of a near-surface environment.

1.2 Research objectives

The main objective of this thesis is the development and implementation of iterative
geostatistical FDEM, and joint FDEM and electric resistivity tomography (ERT), inversion
methods able to predict the spatial distribution of EC and MS at high spatial resolution. These
methods should be able to cope with complex and heterogeneous environments, while
simultaneously assessing the uncertainty of the predicted models. In more detail, the

objectives of this thesis can be described in the following four sub-objectives:

Objective one of this thesis is the development of a synthetic data set based on direct and
laboratory measurements obtained from samples acquired in a complex near-surface deposit
corresponding to a mine tailing. This data set is used to validate the inversion methodologies

presented in this thesis.

Objective two of this thesis is the development and implementation of an iterative
geostatistical frequency-domain electromagnetic inversion methodology that allows to
simultaneously predict EC and MS. The proposed method can integrate existing direct
measurements, assess uncertainties related to the inverse models and account for a priori

geological knowledge about the spatial distribution of the soil properties.

Objective three of this thesis is to tackle the computational cost that iterative FDEM inversion
methodologies have when solving large-scale three-dimensional problems in near-surface

applications. Machine learning is applied for dimensionality reduction and the inversion is
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performed in the reduced space without compromising the exploration of the model parameter

space.

Objective four of this thesis is the development and implementation of an iterative
geostatistical geophysical joint inversion approach to increase the accuracy of the predicted

subsurface models while reducing their uncertainty.

1.3 Structure of the thesis

This thesis follows a structure based on research that is published, or submitted for publication,
in international peer-reviewed journals. The thesis is divided into six chapters and its overall

structure is outlined in Figure 1.1.

Chapter one underlines the rationale behind this thesis, the research questions that it proposes

to answer, the main objectives of this work and describes the structure of the thesis.

Chapter two addresses the first and second objectives of this thesis. It describes the
development of a realistic synthetic data set used to validate the geostatistical inversion
methodologies developed and implemented under the scope of this thesis. It also describes
an iterative geostatistical FDEM inversion (GEMI), validated in the realistic synthetic data set
and tested in a real data set application example. The work of this chapter is under review for

publication in a peer-reviewed journal.

Chapter three extends objective two with a comparison between the iterative geostatistical
inversion method of FDEM data presented in chapter two and a probabilistic inversion method
of FDEM data based on the Kalman Ensemble Generator technique. Both FDEM inversion
methods are validated and tested on the same synthetic data set, exploring the potential and
limitations of each method. The work of this chapter is published in a peer-reviewed journal
(Narciso et al., 2022).

Chapter four presents a FDEM inversion methodology that combines an ensemble smoother
with multiple data assimilation (ES-MDA) and model re-parameterization via randomized
tensor decomposition (RTD), to simultaneously predict electrical conductivity and magnetic
susceptibility from measured FDEM data. This chapter focuses on objective three and tries to
overcome the computational costs associated with solving large-scale three-dimensional
problems in near-surface modelling techniques. The method is applied to synthetic and noisy
real data sets. The work of this chapter is published in a peer-reviewed journal (Liu et al.,
2023).



Introduction

Chapter five presents a geostatistical joint inversion methodology of electromagnetic and
electrical resistivity data. This multi-geophysical inversion approach was developed and
implemented to improve the detection of near-surface heterogeneities and spatial structures
of the properties of interest when compared to single geophysical inversion methods. The
proposed method aims at objective four. The joint inversion method is validated with a synthetic
data set and then tested on a real data set. The work of this chapter is described in a

manuscript under review for publication in a peer-reviewed journal.

Chapter six summarizes the main conclusions of this thesis and links the content and
conclusions of each chapter to the corresponding objectives. Also, it discusses the limitations

of the proposed methods and potential future research perspectives.

- CHAPTER 1

Introduction — Background and objectives

- CHAPTER 2
Iterative geostatistical FDEM inversion —

synthetic and real case applications

= CHAPTER 3
Benchmark of statistical-based FDEM

inversion methods

- CHAPTER 4

FDEM inversion in the reduced dimension

OBJECTIVES

— synthetic and real case applications

- CHAPTER 5
Joint electromagnetic and electrical

inversion method

- CHAPTER 6

Conclusions = objectives and perpectives

Figure 1.1 Structure of the thesis.
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1.4 Research outcomes

In addition to the publications in international peer-reviewed journals on which the chapters of
this thesis are based, the research developed under the scope of this thesis was presented at

the following international scientific conferences, as poster or oral presentation:
Oral presentations

e Narciso, J., Azevedo, L., and E. Van De Vijver, 2023, Geostatistical joint inversion of
FDEM and ERT data: a three-dimensional real case application. Near Surface
Geoscience Conference 2023, EAGE, Edinburgh, UK, 3-7 September,
doi.org/10.3997/2214-4609.202320177 (Extended Abstract).

e Narciso, J., Azevedo, L., and E. Van De Vijver, 2022, Geostatistical joint inversion of
frequency-domain electromagnetic data and direct current resistivity data for modelling
near-surface deposits. Near Surface Geoscience Conference 2022, EAGE, Belgrade,
Serbia, 18-22 Sep. doi.org/10.3997/2214-4609.202220178 (Extended Abstract).

¢ Narciso, J., Van De Vijver, E., and L. Azevedo, 2022, Modelling the complexity beneath
our feet: A joint inversion FDEM and ERT technique. GeoEnv 2022, Parma, Italy, 22-
24 June.

e Narciso, J., Azevedo, L., Van De Vijver, E., and M. Van Meirvenne, 2021, Geostatistical
inversion of electromagnetic induction data for modelling waste deposits. GeoEnv
2020, 13th International Conference on Geostatistics for Environmental Applications,

Online, 18 June.

e Narciso, J., Liu, M., Van De Vijver, E., Azevedo, L., and D. Grana, 2021, Frequency-
domain electromagnetic induction inversion with randomized tensor decomposition.
EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-15471,
doi.org/10.5194/egusphere-equ21-15471

e Azevedo, L., Narciso, J., and E. Van De Vijver, 2021, Geostatistical FDEM inversion: a
three-dimensional real case application. EGU General Assembly 2021, online, 19-30
Apr 2021, EGU21-16130, doi.org/10.5194/egusphere-equ21-16130

e Narciso, J., Azevedo, L., Van De Vijver, E., and M. Van Meirvenne, 2021, Geostatistical
Electromagnetic Inversion for Landfill Characterization. Symposium for the Application
of Geophysics to Engineering and Environmental Problems (SAGEEP) 2021, Online,
14-19 March.



Introduction

Narciso, J., Azevedo, L., Van De Vijver, E., and M. Van Meirvenne, 2020, Geostatistical
Electromagnetic Inversion for Landfill Characterization. Near Surface Geoscience
Conference 2020, EAGE, Online, 7-8 Dec, doi.org/10.3997/2214-4609.202020154
(Extended Abstract). Best oral communication of NSG2020.

Narciso, J., Azevedo, L., Van Meirvenne, M., and E. Van De Vijver, 2020, Geostatistical
inversion of electromagnetic induction data for landfill modelling. EGU General
Assembly 2020, Online, 04-08 May, EGU2020-20650, 10.5194/egusphere-egu2020-
20650

Poster presentations

Narciso, J., Bobe, C., Azevedo, L., and E. Van De Vijver, 2020, Comparing stochastic
FDEM inversion methods for near-surface modelling. Abstract NS014-0011 presented
at 2020 Fall Meeting, AGU, Online, 1-17 Dec.

Narciso, J., Azevedo, L., and E. Van De Vijver, 2020, Geostatistical electromagnetic
inversion for landfill modelling and characterization. In: Focaccia S., Kral U., Cormio
C., Hengl I. (Eds.). Book of Abstracts: Poster session, Conference on Mining the
European Anthroposphere, 20-21 Feb 2020, Bologna, 10.34726/4nat-yb46. Best

poster of the conference.



Chapter 1

10



CHAPTER 2

Geostatistical inversion of FDEM for

near-surface modelling

The research presented in this chapter was submitted to:

Narciso, J.*, Van De Vijver, E., and L. Azevedo, (under review), Geostatistical Inversion of

Frequency-Domain Electromagnetic Data for Near Surface Modelling: Geophysics.



Chapter 2

The detailed characterization of near-surface deposits is important for both
environmental and economic reasons. These shallow subsurface systems can be
very complex and heterogenous due to natural dynamics and anthropogenic
interferences. Modelling techniques based exclusively on direct sampling generate
limited informed three-dimensional models of the near-surface. Geophysical
methods provide valuable and additional information to model the spatial
distribution of the near-surface for locations where direct observations are not
available. From this set of methods, frequency-domain electromagnetic induction
(FDEM) has been successfully applied to image complex near-surface deposits.
Yet, predicting the spatial distribution of relevant subsurface properties from
geophysical data, and the integration of direct observations, is not straightforward.
It requires solving a challenging geophysical inversion problem. Geostatistical
modelling tools have been effectively applied to couple direct observations with
geophysical data such as seismic reflection. This chapter presents an iterative
geostatistical FDEM inversion method able to integrate data from direct
measurements of the near-surface with surface loop-loop FDEM measurements to
simultaneously predict high-resolution models of electrical conductivity and
magnetic susceptibility, and their associated uncertainty. The iterative
geostatistical inversion method is based on stochastic sequential simulation and
co-simulation as model perturbation and update techniques. The iterative
optimization is based on the local data misfit between observed and simulated
FDEM data, weighted by the sensitivity of the acquisition equipment. The proposed
method is first demonstrated for a synthetic landfill data set created based on real
data collected at a mine tailing disposal site in Portugal, and on a real data set
collected at a site with archaeological features in Knowlton, UK. The results show
the ability of the proposed method to accurately predict and characterize the spatial
distribution of electrical conductivity and magnetic susceptibility down to the depth
of interest while reproducing the recorded FDEM data.

2.1 Introduction

Subsurface environments can be highly complex and heterogeneous due to interacting
processes of both natural and anthropogenic origins (e.g., Everett, 2013; Lehmann and Stahr,
2007; Morel et al., 2015; Reynolds, 2011). The effective sustainable management and use of
the subsurface natural resources, especially in urban environments, including the sustainable
remediation and redevelopment of contaminated or otherwise degraded natural or

anthropogenic deposits, as well as climate-smart urban land-use planning, relies on the
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availability of high-quality subsurface information. Methods for near-surface modelling and
characterization based on discrete observations from conventional invasive sampling
techniques, such as drilling and core sampling, have limitations to capture the spatial variability
of heterogeneous near-surface systems (e.g., Van De Vijver, 2017). The detailed
characterization and monitoring of these heterogeneous subsurface environments require
novel and efficient data modelling methodologies that allow for the prediction of accurate high-
resolution and spatially comprehensive subsurface models, while also providing a quantitative
measure for the associated uncertainties. The latter can be critical information when
subsurface models are used as decision-making support in land (re)development projects with

important environmental and economic impacts.

Near-surface geophysical surveys have emerged as complementary and powerful data
sources that, combined with direct observations for calibration and validation of the results,
enable predicting the spatial distribution of subsurface physical properties of interest to
characterize heterogeneous near-surface systems (e.g., Butler, 2005; Di Maio et al., 2018;
Dumont et al., 2017; Narciso et al.,, 2022; Persico et al., 2018). From the non-invasive
geophysical techniques applied in near-surface characterization, electromagnetic surveys
have been one of the most widespread and applied techniques (e.g., Delefortrie et al., 2014a;
Doolittle and Brevik, 2014; Moghadas et al., 2017; Triantafilis and Monteiro Santos, 2013).
Particularly loop-loop frequency-domain electromagnetic induction (FDEM) methods have
demonstrated their potential in various application domains, based on their compatibility with
a wide variety of subsurface conditions, and capacity to collect high-resolution data in a time-
efficient way, as direct ground contact between the instrument and the ground is not required.
Besides, FDEM measurements are simultaneously sensitive to two key subsurface properties,
electrical conductivity (EC) and magnetic susceptibility (MS). EC relates, amongst others, to
soil salinity, texture, organic matter and moisture content, and bulk density. The MS has been
proven useful for mapping natural variations in soil mineralogy as well as mapping traces of
anthropogenic soil interference (Viscarra Rossel et al., 2011). Knowledge of the spatial
variability of these subsurface properties can often be linked to subsurface structures and
processes of interest in various application domains, such as agriculture (e.g., Pedrera-Parrilla
et al., 2016; von Hebel et al., 2021), landscape archaeology (e.g., De Smedt et al., 2013), and

environmental assessment (e.g., Van De Vijver et al., 2015).

Multi-receiver FDEM data, considering both the in- and quadrature-phase (IP and QP,
respectively) components of the signal, represent indirect measurement of the subsurface that
can be used to predict the subsurface spatial distributions of EC and MS by solving a
geophysical inversion problem (i.e., the FDEM inversion problem). Due to insufficient data, the

bandlimited nature of the FDEM data, measurement noise and random and systematic errors
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in data acquisition, the FDEM inversion problem is ill-posed, nonlinear and has multiple

solutions (Tarantola, 2005).

FDEM inversion methods might be categorized into two main groups: deterministic and
probabilistic methods. Most examples available in the literature to predict subsurface
properties from recorded FDEM data use deterministic methods, which predict a single,
smooth, best-fit subsurface model (e.g., Farquharson et al., 2003; Monteiro Santos, 2004;
Sasaki et al., 2010; Dafflon et al.,, 2013; Huang et al., 2016). In addition, the uncertainty

assessment of deterministic FDEM inversion methods is limited.

Subsurface models predicted from probabilistic FDEM inversion techniques have
demonstrated to be more suitable to model heterogeneous subsurface systems and assess
uncertainties about the predictions, thereby providing support for more informed decision-
making (e.g., Jadoon et al., 2017; Moghadas and Vrugt, 2019). Besides, the increase in
available computational resources led to a growth in the number of publications about this type
of FDEM inversion methods in recent years (e.g., Minsley, 2011; Guillemoteau et al., 2016;
Bobe et al., 2019; Narciso et al., 2022).

Amongst the probabilistic geophysical inversion methods, iterative geostatistical geophysical
inversion methods (e.g., Hansen et al., 2006; Azevedo and Soares, 2017; Grana et al., 2022)
have proven their value to predict high resolution rock and/or elastic properties models of the
deep subsurface from seismic reflection data. These methods allow integrating different types
of data (e.g., borehole data and a priori geological knowledge), provide a detailed description
of the spatial distribution of the properties of interest (i.e., subsurface models with higher
variability than the observed data), and assess the spatial uncertainty of the predicted model,
but their application to near-surface geophysical technigues — other than seismic methods —is

still very limited.

The application of this kind of methods to FDEM is particularly relevant considering FDEM
inversion results are intrinsically sensitive to three-dimensional (3D) heterogeneity (e.g.,
Delefortrie et al., 2019; Moghadas et al., 2012) while, due to the computational costs involved
in the computation of 3D forward models (i.e., an electromagnetic numerical simulator), the
majority of FDEM inversion studies presented in the literature uses one-dimensional (1D)
forward models (Guillemoteau et al., 2017), mostly assuming a horizontally layered earth and

ignoring lateral variability.

In this chapter is presented an iterative geostatistical FDEM inversion (GEMI) method to
simultaneously predict the spatial distribution of EC and MS, by integrating surface geophysical

data and direct, in-situ, measurements in the same workflow. Stochastic sequential simulation
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and co-simulation are used for model generation and update. The iterative procedure is driven
by the misfit between predicted and observed FDEM data and depends on the sensitivity of
the acquisition equipment in depth. The results of the proposed FDEM inversion method are a
set of high-resolution subsurface EC and MS models that fit equally well the observed FDEM
data for all the configurations considered. This ensemble of models can be used for example

to assess regions of higher and lower uncertainty.

The proposed inversion method is illustrated for a synthetic and a real data set. The synthetic
example shows the reliability of the method in reproducing the true EC and MS spatial
distribution and the real case example allows assessing the performance of the method under
real noise conditions. The results of the real case application are compared against borehole

data that were not considered during the inversion (i.e., blind test).

The next section describes in detail each step of the proposed methodology. Then, are
presented the results of its application to a 3D synthetic landfill mining data set created based
on real data collected at a mine tailing disposal site in Portugal, and to a 3D real data set from
a study area located in Knowlton, UK (Delefortrie et al., 2018), where the subsurface consists
of Quaternary deposits overlying Cretaceous deposits. Finally, the results are discussed, and

the main conclusions summarized.

2.2 Methodology

The GEMI method simultaneously predicts the spatial distribution of EC and MS from FDEM
data (Figure 2.1).
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Figure 2.1 Schematic representation of the iterative geostatistical FDEM inversion workflow.

The relationship between the model parameters and the FDEM data can be mathematically

summarized by:

m = F~1(dgys) + € (2.2)
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where m are the model parameters (i.e., EC and MS), d,,s are the observed FDEM data, F
represents the nonlinear forward model that maps the model (m) into the data (d,,s) domain,
and e represents measurement errors and approximations to the physics governing the system

under investigation (Tarantola, 2005).

The FDEM inversion problem is solved with an iterative geostatistical inversion technique that
can be summarized in three main stages: i) perturbation of the model parameter space with
stochastic sequential simulation and co-simulation (Deutsch and Journel, 1998); ii)
computation of the synthetic FDEM responses and the sensitivity of these responses towards
changes in EC and/or MS at a certain depth layer n, using the 1D FDEM forward model
proposed by Hanssens et al. (2019) and assuming a layered half-space model; and iii)
stochastic optimization with stochastic sequential co-simulation (Deutsch and Journel, 1998),
driven simultaneously by the misfit between true and predicted FDEM responses taking into
account the predicted depth of investigation (DOI) as retrieved from the sensitivity provided by
the forward model and the different coil configurations that might exist in the acquisition system
(as defined in ii)). These steps are described in detail below.

2.2.1 EC and MS model generation

The GEMI methodology starts with the generation of a set of Ns models of EC and MS with
stochastic sequential simulation (Soares, 2001). Each model is simulated — in the first iteration
— or co-simulated — in the subsequent iterations — for the entire inversion grid at once resulting
in 3D or two-dimensional (2D) models depending on the recorded FDEM data. Available direct
measurements of EC and MS from in-situ measurements, or borehole data, are used as
conditioning experimental data in the geostatistical simulation. The spatial continuity pattern of
the simulated models is defined by a variogram model, in 2D or 3D, fitted to experimental
variograms computed from the available direct measurements (or borrowed from analogue
areas or expert knowledge). In the iterative geostatistical FDEM inversion method proposed
here, we use direct sequential simulation (DSS, Soares, 2001) and co-simulation with joint
probability distributions (Horta and Soares, 2010) as model perturbation technique of EC and
MS. Unlike sequential Gaussian simulation (SGS) (Deutsch and Journel, 1998), these
stochastic sequential simulation techniques do not impose any condition on the data
distribution (i.e., Gaussian) of the properties to be simulated, thereby avoiding the intermediate
step of a data transformation of the distribution of the properties to be simulated. Instead, the
marginal and joint distributions as inferred from the experimental data are used in the
simulation and co-simulation procedures. For complex and highly nonlinear relationships
between primary geophysical and secondary petrophysical properties related to

electromagnetic induction measurements, the use of non-Gaussian stochastic sequential co-
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simulation techniques allow a better reproduction of the relationship between variables as

retrieved from the available direct measurements.

As the iterative inversion rely on stochastic sequential simulation and co-simulation as model
perturbation and update technique, all the subsurface models generated during the iterative
procedure reproduce the exact values of the borehole data at their locations, the global
marginal and joint distributions of each property, and the imposed spatial continuity patterns

expressed by variogram models.

2.2.2 Forward response and sensitivity modelling

The forward model (Eq. 2.1) is necessary to compute the theoretical FDEM instrument
response, calculated from the differences between the primary electromagnetic field generated
from the transmitter coil and the secondary electromagnetic field generated from conducting
material, of a loop-loop system that is characterized by one transmitter coil and one or multiple
receiver coils (Hanssens et al., 2019). The forward model can be formulated in 1D, 2D or 3D
(Auken and Christiansen, 2004, Cox and Zhdanov, 2008, Farquharson et al., 2003). Here, we
address the 1D vertical variations of both EC and MS, yet forward models can also address
only EC, or even EC, MS and dielectric permittivity simultaneously.

The GEMI method uses a forward model that calculates the theoretical 1D normalized
electromagnetic (EM) response according to Maxwell’s equations and expressed in in-phase
(IP) and quadrature-phase (QP) components, for a horizontal n-layered half-space model
(Hanssens et al., 2019). Since it is a low-frequency application, the IP and QP components
are mainly influenced by EC and MS, in a quasi-static approximation, neglecting the dielectric
permittivity. We calculate Ns synthetic IP and QP responses per coil configuration used in the
acquisition of the field data, for each pair of EC and MS models generated in the previous

iteration, with Ns representing one model of each property.

This forward model considers a FDEM system positioned at the surface, or at a certain height
above the surface (h), of an n-layered subsurface model. It uses Hankel functions, numerically
calculated by means of a Guptasarma and Singh digital filter (Guptasarma and Singh, 1997),
to determine a superposition of Bessel functions of the zeroth and/or first order that model the
EM responses. The total magnetic field H (A/m; primary field, H?, plus secondary field, H) is
calculated for the two types of coil configurations used in the synthetic and real case
applications, the horizontal co-planar (HCP) and the perpendicular (PRP) coil configurations,

for a Z-directed magnetic dipole source located at (0,0, —h):
Hzz = 1[5 [e 0@+ — rppeto=] 42), (Ar)da, (2.2)
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Hyy = _ﬂffow[e—uo(zm) _ TTEeuO(Z_h)] 2], (Ar)dA, (2.3)

atr

where M is the transmitter moment (A/m?), x and z are the coordinates (m) of the receiver caoil,
h is the height (m) of the transmitter coil, r is the transmitter-receiver offset (m), J, and J; are,
respectively, the Bessel functions of zeroth and first order, u, is the wave-number of zeroth
layer, 4 the Hankel transformation, and ry; the reflection coefficient. In the methodology
proposed herein the reflection coefficient approach is used, rather than the propagation matrix

approach, because it is more computationally efficient. The reflection coefficient is defined by:

g = YO_?l (24)

T YoV’

where Y, is the intrinsic admittance of the air half-space, and ¥; is the surface admittance (at
z = 0), which can be determined recursively by starting at the basement half-space (n = N)

toward the surface (n = 1), in a horizontally n-layered half-space model.

The free-space magnetic fields H° (A/m) used in normalization are given for a Z-directed

magnetic dipole source located at (0,0, —h):
HY == ["[e @] 2], (Ar)dA. (2.5)

The normalized total magnetic field HY (in parts-per-million, ppm) is then given by:

H-HP
HO

HY = BHD 106 = #2106 (2.6)
m. 108 .

The recent FDEM instruments use a phase-sensitive measurement between primary and

secondary field, i.e., an IP (or real) and QP (or imaginary) measurement (in ppm):
IP = Re(HY), (2.7
QP = Im(HM). (2.8)

Consequently, FDEM data d,,s (EQ. 2.1) are expressed in parts-per-million (ppm) of the total

magnetic field H (A/m), related to the magnetic field of the zeroth layer (free space), H° (A/m).

This implementation provides a sensitivity modelling, which represents how sensitive the
forward model is toward changes of a physical property m (i.e., EC and MS) at a specific layer
n of the layered half-space. The sensitivity modelling thus calculates the vertical sensitivity
distribution related to each physical property within the considered layered model, through a
brute-force method, or perturbation method (McGillivray and Oldenburg, 1990), that uses a

finite-difference formula based on the Taylor series for HN(m) and HY(m + Am,)) of the
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magnetic fields, where m is EC or MS, and Am,, is the perturbation of the physical property
(Figure 2.2). The forward model must be resolved N times, with N representing the number of
layers, each time with a perturbation Am,, of the governing nth layer model parameter m,,, with
m representing one of the physical properties. The sensitivity modelling (derived from Egs. 2.2

and 2.3) can be used for estimating the depth of investigation (DOI).
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Figure 2.2 Relative normalized sensitivity analysis of IP and QP at depth for each coil configuration
used in the synthetic case application, at position 10 m on the profile shown in Figure 2.3.

2.2.3 Stochastic model optimization

The model optimization is achieved by the maximization of the similarity coefficient (S)
computed between predicted and observed FDEM data for all the coil configurations (t¢eis)-
Each coil configuration corresponds to an offset (i.e., the distance between transmitter(s) and
receivers) and an orientation (i.e., HCP or PRP). S is calculated per coil configuration and for

each geostatistical realization (Ns) of EC and MS generated at a given iteration, following:

Sj’t _ 2% Zs 1(XS*YS )

, j=1,..,,Ns and t=1,. , 29
o l(xt) AN 1(}’5 ) ] = Leoils ( )

where x and y are the observed and synthetic QP (or IP) data with N samples, respectively.
By construction S is bounded between -1 and 1, but negative values are truncated at zero so
it can be used as secondary variable for the stochastic sequential co-simulation of a new set
of Ns models in the subsequent iteration, constraining the realizations of that iteration. S is
sensitive simultaneously to the shape and magnitude of the recorded IP and QP signal. We
opted for this metric to avoid an objective function with two terms (i.e., both components of the
data), dependent on user-defined parameters to weigh each term of the objective function. S
is not computed for the entire series of the FDEM data at once, but for a set of non-overlapping
2D horizontal windows that visit the entire data series. These windows are randomly created,
with different sizes, at the beginning of each iteration. Using multiple windows for the entire

data grid (i.e., the FDEM measurement locations, with t..;s configurations per FDEM
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measurement location), with each window having a smaller number of samples than the entire
data set, this approach allows reaching higher S values at early stages of the iterative
procedure. This procedure is similar to the one proposed in Azevedo and Soares (2017) for

geostatistical seismic inversion.

Each S computed for each grid location is then weighted in depth by the normalized sensitivity
curves of each coil configuration (Figure 2.2) obtained for the corresponding EC and MS
resulting from the FDEM forward model. In the application examples shown below, assumption
have been made that EC is directly dependent on QP and MS on IP (alternative assumption

might be considered):
Spct = sensgc(z) * S, j=1,..,Ns and t=1,...,tis (2.10)
Sms"t = sensys(z)t * ST, j=1,..,Ns and t=1,...,tis (2.11)

where sensg: and sensys are the normalized sensitivities, in depth, at each FDEM data
location within the inversion grid. This approach allows to weigh the assimilation of each coil
configuration to the predicted EC and MS models in the subsequent iteration. The similarity
obtained for a given coil configuration/offset influences in depth the stochastic update of EC
and MS.

At the end of each iteration, auxiliary volumes of EC and MS are built with the parts of the Ns
simulated EC and MS models (subvolumes of the inversion grid) that generate predicted QP
and IP data with the highest S for a given location, considering simultaneously all the t ;s (i.e.,
coil configurations). The volumes of EC and MS are stored as auxiliary volumes along with the

corresponding S.

In the subsequent iteration, these auxiliary variables (i.e., the selected S and corresponding
EC and MS volumes) are used to co-simulate a new set of EC and MS models. For locations
associated with S~1 the new ensemble of co-simulated models of EC and MS will be similar
to the auxiliary volumes. On the other hand, locations with S < 0.5 will exhibit larger variability
within the ensemble of new models. This model update approach ensures the convergence of
the geostatistical FDEM data inversion along the inversion procedure, with the minimization of

the misfit between observed and predicted FDEM data.

The proposed iterative geostatistical inversion methodology for FDEM data may be

summarized in the following sequence of steps (Figure 1):

i) Generation of two ensembles of Ns models of EC and MS given borehole data and

variogram models retrieved from these borehole data, with stochastic sequential
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ii)

Vi)

vii)

simulation (Soares, 2001) — in the first iteration — and co-simulation — in the next
iterations — with joint probability distributions (Horta and Soares, 2010),

respectively;

Calculation of the Ns synthetic FDEM data for each pair of models simulated in i)
using a FDEM forward model. In the application examples shown below we use the

1D FDEM forward model proposed by Hanssens et al. (2019);

Compute S between true and predicted FDEM data per coil configuration, within

each of the randomly created window at the beginning of the iteration;

Weight the similarity coefficient in depth by the normalized sensitivity analysis of
the FDEM data for all coil configurations (Eqs. 2.10 and 2.11);

Build three auxiliary volumes by selecting the EC and MS local value that ensure
the highest S at a given location from all the Ns models of each iteration. Store the

corresponding EC, MS and S values;

Generate a new ensemble of EC and MS models using co-DSS and the auxiliary

volumes resulting from v) as secondary variables;

Iterate and repeat steps ii)-vii), until the global convergence of the method reaches
a pre-defined threshold of global S computed between all offsets for IP and QP

simultaneously.

All models of EC and MS generated during the iterative geostatistical FDEM inversion are

conditioned locally by existing borehole data for EC and MS. They reproduce the global

marginal and joint distributions between EC and MC as inferred from the borehole data and a

pre-defined spatial continuity pattern as imposed by a variogram model.

The GEMI method is flexible and can be parameterized for all possible coil configurations (i.e.,

transmitter-receiver orientations and distances between the transmitter and the receiver) that

are included in the FDEM survey data set and alternative forward models as long they provide

a measure of sensitivity in depth.
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2.3 Synthetic case application

2.3.1 Data set description

The synthetic data set used in this section comprises a three-dimensional grid of 30 by 40 by
4 meters (i.e., length, width, depth dimension, respectively) and a cell size of 0.1 m by 0.1 m
by 0.1 m in each dimension, respectively. The data set was created based on real data
collected at a mine tailing disposal site in Portugal (Panasqueira), in which the main mining
production is copper and wolfram (Narciso et al., 2020). Laboratory measurements of porosity
and particle density on two different geological materials, fine-shaly sands and quartz-schist
gravels, were available. This information was used as conditioning data to generate realistic
3D numerical models of porosity, particle density and water content using geostatistical
simulation and co-simulation (Deutsch and Journel, 1998). The variogram model for porosity
was fitted to experimental variograms computed from the available samples. A spherical model
was fitted, in the horizontal direction isotropy was assumed and a range of 8 m was used, in
the vertical direction a range of 2 m was used. We assumed a nugget effect of 5% of the total
variance of the available samples.

Particle density and water saturation models were generated with stochastic sequential co-
simulation conditioned to the porosity model. Particle density was modelled with an
omnidirectional spherical variogram model with a horizontal range of 8 m, a vertical range of 2
m and a nugget effect of 5% of the total variance of the available data. The spatial continuity
pattern of water saturation was modelled with an omnidirectional spherical variogram model
with a horizontal range of 12 m, a vertical range of 4 m and a nugget effect of 0% of the total
variance of the collected samples. The sequential approach intends to ensure geological

plausibility between properties.

EC was derived from the previously simulated models by applying Archie’s law, relating the
bulk electrical resistivity (R;) of a porous medium to the porosity and the water content (Archie,
1942):

R, =a ¢ *R,S;", (2.12)

where a is the tortuosity constant, assumed as 0.88, ¢ is the porosity, R,, the electrical
resistivity of the pore fluid, assumed as 0.25 (Q-m), S,, is the water saturation, k is the
cementation exponent that varies between 1.3 and 2.5 for most sedimentary rocks and was
assumed as 1.37, and n is the saturation exponent, which depends on the type of the pore

fluid and was set to 2. From the lithology and range of porosity values present in the synthetic
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model, the values of a, k and n were defined from Keller (1987). The EC was then calculated

based on Archie’s second law (Archie, 1942):
-1
EC=1/p.. (2.13)

MS was simulated independently as it does not depend on EC. We used unconditional
stochastic sequential simulation algorithms (Deutsch and Journel, 1998) and imposed an
omnidirectional spherical variogram model with a horizontal range of 12 m, a vertical range of
4 m and a nugget effect of 0% of the total variance of the experimental data. These variogram

ranges agree with common ranges for unconsolidated sediments (Hudson et al., 1999).

After the generation of the true 3D model for EC and MS, four boreholes were extracted equally
spaced along one 2D transect. The data from the four boreholes are considered as
experimental data to condition the iterative geostatistical inversion. In this way we include
uncertainty in the spatial continuity model used within the inversion. Table 2.1 summarizes the
main parameters of the variogram models imposed for the geostatistical FDEM inversion. The
resulting variogram models have a higher nugget effect than the true ones as these were fitted
to experimental variograms calculated from the four-borehole data. The nugget effect

represents the lack of knowledge about EC and MS at the small-scale.

Table 2.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total
variance of the data, for the variogram models used to simulate and co-simulate EC and MS.

Omnidirectional spherical variogram | EC models | MS models
Horizontal range 8m 10m
Vertical range 4m 4m
Nugget effect 5% 5%

To generate the synthetic observed geophysical data, the coil configurations of a multi-receiver
FDEM sensor was mimicked, namely a DUALEM-21S (DUALEM Inc., Milton, Canada). This
equipment includes pairs of two different transmitter-receiver (loop-loop) orientations, the
horizontal coplanar (HCP) and the perpendicular (PRP) configurations, and two offsets per coil
orientation, 1 and 2 meters for HCP, and 1.1 and 2.1 meters for PRP. The true geophysical
data was computed by applying the forward model described in the methodology section,
which was also applied in the inversion (Hanssens et al., 2019). This approach assumes there
is no uncertainty in the forward modelling, which is a hard assumption in complex and highly
variable near-surface environments and neglects three-dimensional effects of the propagated
field.
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We ran the proposed iterative geostatistical FDEM inversion technique with six iterations and
thirty-two realizations (i.e., Ns = 32) of EC and MS models per iteration spatially constrained

to borehole data (Figure 2.3) and the imposed variogram models (Table 2.1).

2.3.2 Results

The results obtained with the proposed iterative geostatistical FDEM inversion method are

illustrated for the 2D transect of EC and MS that intersects the four boreholes (Figure 2.3).
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Figure 2.3 True electrical conductivity (left) and magnetic susceptibility (right) and location of the 4
boreholes providing conditioning data of the iterative geostatistical FDEM inversion.

The convergence of the iterative geostatistical FDEM inversion method with respect to
parameter model reproduction is assessed by calculating the pointwise mean models
computed from all the realizations generated at each iteration. The pointwise mean model is
equivalent to the maximum a posteriori model from a Bayesian inversion. The predicted and
the true EC and MS models show similar large-scale spatial patterns, but present small-scale
differences, which are mainly located in the deeper part of the models where the sensitivity of

the forward model is smaller (Figure 2.4b and 2.5b).
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Figure 2.4 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean
of all the EC models computed in the last iteration; c) pointwise variance of all the EC models
computed in the first iteration; d) Pointwise variance of all the EC models computed in the last

iteration.
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The iterative geostatistical FDEM inversion method reproduces the true model of EC and is
sensitive to local transitions between high and low values of EC (Figures 2.3 and 2.4b). As
showed in the pointwise average of an ensemble of realizations, the reproduction of the true
small-scale heterogeneities cannot be evaluated based on the pointwise average of the
ensemble of realizations, as they are — at least partly — cancelled out by averaging.
Nevertheless, the global values and the areas of extreme values are properly matched (Figure
2.4b and 2.4d).
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Figure 2.5 a) Pointwise mean of all the MS models computed in the first iteration; b) pointwise mean
of all the MS models computed in the last iteration; c) pointwise variance of all the MS models
computed in the first iteration; d) Pointwise variance of all the MS models computed in the last

iteration.

The small-scale differences and the relationship with depth and sensitivity loss of the predicted
solutions are also observed by calculating the pointwise variance models from the ensemble
of EC and MS models generated at each iteration (Figures 2.4c, 2.4d, 2.5¢ and 2.5d). As
expected, in the first iteration the spatial distribution of the variance is only dependent on the
distance to the locations of the borehole data as the observed FDEM is not assimilated yet.
The pointwise variance models of EC and MS computed from models predicted during the last
iteration of the geostatistical inversion, shows the influence of the sensitivity provided by the
forward model, as the higher variance values are mainly located in the deeper part of the model
(Figure 2.4d and 2.5d). The spatial distribution of the pointwise EC variance model presents a
reduction in in-depth sensitivity, directly dependent on the coil configurations used, although it
shows robustness and accuracy in detecting the lowest local values of EC (Figure 2.4d). The
predictions about MS are less sensitive at depth, with the spatial pattern of the pointwise

variance model presenting a higher dependence on the coil configurations used (Figure 2.5d).

The proposed iterative inversion technique is able to reproduce the true models (e.g., EC,

Figure 2.6a) and converge to the true solution, with the residuals between the true EC model
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and one EC realization reducing significantly from the first to the last iteration (Figure 2.6b).
The predicted models reproduce the spatial continuity patterns of the true models (Figure 2.6¢
and 2.6d). As expected, the sill of the predicted models is slightly smaller than in the
variograms of the EC true models as result of the increased local variability of the ensemble

coming from the stochastic simulation.
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Figure 2.6 a) Histograms of the true EC and one EC model computed in the last iteration; b)
Histogram of the residuals between one EC model computed in the first iteration and one EC model
computed in the last iteration; c) Horizontal variogram models for EC; d) Vertical variogram models
for EC.

The misfit between observed and predicted IP and QP data can be assessed (Figures 2.7 and
2.8). The figures show, for all coil configurations considered, the match between observed and
predicted IP and QP responses increases from the first to the last iteration. The uncertainty
envelope, as represented by the synthetic response of the ensemble of models in each
iteration, narrows and encloses the observed IP and QP data as the iterative procedure
advances. Although the uncertainty envelope of all coil configurations in the last iteration well
encloses the true FDEM data, a better match is reached in QP responses and in smaller coil
distances. This is due to a more stable signal in QP responses and a higher sensitivity to small-
scale heterogeneities at shallow depths when the coils are closest to each other, although also
losing sensitivity at greater depths, as shown in Figures 2.7 and 2.8. Also, due to an increasing
and partly overlapping DOI of the different coil configurations, the shallowest depths are

covered by all the FDEM measurement signals, while the largest depths are only covered by
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one measurement signal. As expected, the predicted QP and IP responses at the borehole
locations are exactly reproduced as the predicted EC and MS models are locally conditioned
by the borehole data.
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Figure 2.7 Comparison between observed (red line) and predicted IP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for four coil configurations (HCP
orientation with 1 m and 2 m offset, PRP orientation with 1.1 m and 2.1 m offset). The light blue lines
represent the minimum and maximum FDEM values predicted at a given iteration. In the left column
the predictions at the end of the first iteration are represented and in the right column the predictions
at the end of the last iteration are represented. Vertical dashed lines indicate the location of the

borehole data.
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Figure 2.8 Comparison between observed (red line) and predicted QP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for four coil configurations (HCP
orientation with 1 m and 2 m offset, PRP orientation with 1.1 m and 2.1 m offset). The light blue lines
represent the minimum and maximum FDEM values predicted at a given iteration. In the left column
the predictions at the end of the first iteration are represented and in the right column the predictions
at the end of the last iteration are represented. Vertical dashed lines indicate the location of the
borehole data.

2.4 Real case application

2.4.1 Data set description

The GEMI method was applied to a real data set obtained from an FDEM survey located at a
site near Knowlton (Dorset, UK). The site is an arable land with a 20 cm thick rendzina soil
cover, gentle slope, and geologically characterized by Cretaceous bedrock chalk overlain by
Quaternary siliciclastic sand deposits. The bedrock chalk exhibits an overall background
susceptibility of zero, while the topsoil is strongly magnetic (MS =~ 1x10®). The subsurface has
a low EC (~ 7 m/Sm), with the topsoil being slightly more conductive. The subsurface is also
known to contain several archaeological features from the Stone Age that produce strong local
IP anomalies. The FDEM data was collected during 2016 using a DUALEM-21HS instrument,
with an operating frequency of 9000 Hz and pairing one transmitter with three horizontal

coplanar receiver coils, at 0.5, 1 and 2 m spacing (HCPH, HCP1 and HCP2, respectively), and
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three perpendicularly oriented receivers at 0.6, 1.1 and 2.1 m spacing (PRPH, PRP1 and
PRP2, respectively). Yet, due to poor signal-to-noise ratio, the smallest offsets (0.5 and 0.6 m)
were not used in this study. The FDEM survey was performed using a motorized survey
configuration with the instrument elevated at 0.16 m above the surface, along parallel lines 1
m apart at a speed of ~8 km/h, and a sampling frequency of 8 Hz. A detailed description of the

data set can be found in Delefortrie et al. (2018).

The pre-processing of the FDEM data included: i) the correction for the spatial offsets between
the position and sensor data, following the procedure described in Delefortrie et al. (2016); ii)
the correction for signal drift — a relative calibration, following the procedure in Delefortrie et al.
(2014b); and iii) an absolute calibration per coil configuration to eliminate the presence of signal
offsets, comparing the forward modelled responses at locations where in-situ measurements
of EC and MS were available with the measured FDEM responses. Strong correlations
between the theoretical and measured response were found, except for the PRP2 data, which
may be related to low signal-to-noise ratio and/or high sensitivity to surface conditions.

Electrical conductivity and magnetic susceptibility data were collected at twelve calibration data
locations (boreholes), with intervals measurements in depth of 5-10 cm, some reaching depths
of 1.2 m. The magnetic susceptibility data were collected with an MS2H downhole probe
(Bartington instruments, England) in 2.5 cm diameter gouge borehole, reaching a minimum of
15 cm in the chalk bedrock and its expected background susceptibility (zero). The electrical
conductivity data were collected using a UMP-1 BTim field probe (UGT) in a 5 cm diameter
borehole. Also, at each calibration location, a lithological description was made and the depth
of the boundary between the two formations (depth to chalk) was measured. Figure 2.9 shows
the location of the inversion grid used in this application example. This data corresponds to
part of the entire survey data presented in Delefortrie et al. (2018). The high in-phase
anomalies are related to buried archaeology, and the location of the available borehole data.
From the existing set of direct measurements, one borehole was kept out of the conditioning
data and used exclusively as blind test to evaluate the performance of the proposed FDEM

inversion method.

2.4.2 Results

Figure 2.9b shows the interpolated map of the predicted IP data, for PRP coil configuration
with 1.1 m offset, from the pointwise mean of EC and MS models generated during the last
iteration of the inversion procedure. The main archaeological features observed in the field
map do match the ones predicted by the most likely model for the same coil configuration

(Figure 2.9a), with strong local in-phase anomalies. However, this prediction is smoother due
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to the fact of being computed from the pointwise mean models of EC and MS generated during

the last iteration of the inversion procedure.
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Figure 2.9 IP maps (ppm) for PRP coil configuration with 1.1 m offset, using a 2D median filter of 0.3
x 0.3 m and: a) the observed FDEM data; b) the synthetic FDEM data computed from the pointwise
mean models of EC and MS of the 6th iteration. The yellow lines represent the location of the vertical
sections (A-B and C-D) of Figures 2.9 to 2.14. White points represent the locations of the available
borehole data (blind well in red). Coordinate system in WGS84/ UTM zone 30N, EPSG:32630

To assess the performance of the proposed iterative geostatistical FDEM inversion technique,
Figures 2.10 to 2.13 show the pointwise mean and variance models of the ensemble of EC
and MS models predicted at the first and the last iterations of the proposed iterative
geostatistical FDEM inversion. The pointwise variance models of both properties clearly show
the influence of including the sensitivity of the forward model to the model parameters,
increasing in depth as the sensitivity of the FDEM decreases, in line with the results achieved
in the synthetic case application. Two distinct regions can be clearly observed, a shallower
one with lower variance and a deeper one with higher variance where the influence of the
recorded FDEM data is small. With the coil configurations used, the sensitivity of the inversion
procedure is limited to approximately 2 meters depth in EC models and 1 meter depth in MS

models.
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Figure 2.10 Vertical sections extracted from: a) and b) pointwise mean model calculated from all
models of EC generated during the 1st iteration; c) and d) pointwise mean model calculated from all

models of EC generated during the 6th iteration. The vertical dashed red line represents the location
of the blind well.
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Figure 2.11 Vertical sections extracted from: a) and b) pointwise variance model calculated from all
models of EC generated during the 1st iteration; ¢) and d) pointwise variance model calculated from
all models of EC generated during the 6th iteration. The vertical dashed red line represents the
location of the blind well.
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Figure 2.12 Vertical sections extracted from: a) and b) pointwise mean model calculated from all
models of MS generated during the 1st iteration; c) and d) pointwise mean model calculated from all
models of MS generated during the 6th iteration. The vertical dashed red line represents the location
of the blind well.
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Figure 2.13 Vertical sections extracted from: a) and b) pointwise variance model calculated from all
models of EC generated during the 1st iteration; ¢) and d) pointwise variance model calculated from
all models of EC generated during the 6th iteration. The vertical dashed red line represents the
location of the blind well.

The performance of the proposed methodology can also be assessed by the misfit between
observed and predicted FDEM data (Figures 2.14 and 2.15) along the direction of the same
two-dimensional profile C-D shown in Figures 9 to 13. The predicted FDEM responses were
calculated from the ensemble of all models generated during the first and last iterations, for all
coil configurations. The increasing convergence from iteration-to-iteration is illustrated by the
envelope of the synthetic FDEM responses that gets narrower and closer to the observed data
as the iterative procedure moves froward.

Contrary to the IP data, the observed QP responses are better enclosed by the predictions
generated during the last iteration. The better reproduction of QP is due to the higher signal-
to-noise ratio of this component of the data. This effect is a consequence of the type of FDEM
equipment used during the data acquisition. In general, the predicted FDEM data for both the
IP and QP signal components, and all coil configurations and offsets, do match the recorded
field data.

33



Chapter 2

IP, iteration 1, HCP1

IP, iteration 6, HCP1

; ek | ; ; ; : ; ;
500 . I ; -‘***BlindWeII e oy 1 — 4
£ Per AT K 4 . g 24 | X Obs. data *&'f'“‘*'-’i\* s e, AESEEREL iR
S T e R I i Syn. data o
‘ - = =FWD of mean 1
0 . . . \ . h Max and Min . . : . . .
IP, iteration 1, HCP2 IP, iteration 6, HCP2
; = | ; ; ; = ; ; |
B00F ek ¥ 4 . K » SO g - ,f* .
g 4o kR R iRt PR, ot s PR
0F | 1 r i 1
-200 L L L L L L L L 1 L L L
IP, iteration 1, PRP1m IP, iteration 6, PRP1
‘ — ‘ ‘ ‘ ‘ — : ‘ .
€ or _;,___!______;x“‘* *. jﬁ S [ ‘_! S0k ¥ %5
&7200-"_,*‘*'«___."* ' **i » ;@~-!'.§ i % ___.M,g.___.’;'* **; * -Jgh--f‘!t'-* *
* ! * * * ! *
400 L L L L L L L L L L L L
IP, iteration 1, PRP2 IP, iteration 6, PRP2
wof 35— E— = ; — — — — ; —
200 * * % a— E * * —
E prEe=t oo inn o e W PR B pEECR A SRR T S RS
= p00[ ¥ ¥ *x ¥ i S L * * % i o 5T %
-400 ! P — S * ! o — ! ]
10 20 30 40 50 10 20 30 40 50
Distance(m) Distance(m)
Figure 2.14 Comparison between observed (red stars) and predicted IP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration. The blue lines represent the minimum and maximum FDEM
values predicted at a given iteration. The left column represents the predictions at the end of the first
iteration and the right column at the end of the last iteration. Vertical dashed lines represent the
location of the borehole data.
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Figure 2.15 Comparison between observed (red stars) and predicted QP data for all models

generated at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC

and MS models generated at a given iteration. The blue lines represent the minimum and maximum

FDEM values predicted at a given iteration. The left column represents the predictions at the end of

the first iteration and the right column at the end of the last iteration. Vertical dashed lines represent

the location of the borehole data.
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2.5 Discussion

The proposed iterative geostatistical FDEM inversion method predicts near-surface EC and
MS models from survey FDEM data (i.e., simultaneously from the IP and QP components of
the electromagnetic field). The inversion method is based on geostatistical simulation and co-
simulation as model perturbation and update techniques. Therefore, the predicted models can
be conditioned locally to existing borehole data and a spatial continuity pattern as described
by a variogram model. The perturbation of the model parameters at each iteration leverages
the sensitivity analysis provided by the forward model (i.e., the assimilation of the recorded
FDEM data accounts for the sensitivity in depth per property as provided by the forward model).
The proposed FDEM inversion method is based on a 1D forward model. This is a limitation as
the propagated electromagnetic field is 3D in nature. Alternative 2D or 3D forward models can
be used if they provide a sensitivity analysis to the model parameters. However, these forward
models would increase the computational costs of the inversion. This hard assumption is
somehow alleviated in the proposed methodology as the model perturbation is global for the

entire grid at once (i.e., in 2D or 3D depending on the data availability).

The synthetic application example illustrates the potential of the proposed FDEM inversion
method to predict a reliable near-surface model. However, this is a relatively simple example
as the same forward model used to create the observed data was used in the inversion
workflow. This limitation is surpassed in the real case application as the field data is three-
dimensional in nature while we use the same 1D forward model approximation in the inversion

procedure. This computational limitation introduces uncertainty in the model prediction.

We evaluate the predicted EC and MS models locally at the location of the “blind well” (Figure
2.16). Despite the much shallower borehole information compared to the depth of the inversion
model, the predicted near-surface properties do match the observed one at the last iteration.

The match is better for MS when compared to EC, predicting properly the abrupt change of
MS around 0.25 m depth (Figures 2.12 and 2.13), consistent with the expected values at depth
of magnetic susceptibility for rendzina soil cover and the bedrock chalk. Overall, EC models
confirm the low conductivity of the subsurface and the topsoil, with slight differences between
both (Figures 2.10 and 2.11). Figure 2.16 also clearly shows the effect of the DOI for both
properties. Below 0.5 m, for MS, and 1 m, for EC, the predictions at iteration 6 are more variable
than above these depths. Finally, Figure 2.17 shows a comparison of the results of the sensor’s
default output for apparent EC (ECa), between the interpolation of the observed QP
component using the low-induction-number (LIN) approximation (Delefortrie et al., 2018), with

the same LIN ECa interpolation using the best-fit synthetic QP component computed during
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the inversion procedure. Both models are similar concerning the range of predicted values and
large-scale spatial features. However, the predicted LIN ECa model from the synthetic data
has more small-scale variability, which is originated by the stochastic nature of the proposed
iterative geostatistical inversion method, resulting in an increased sensitivity to the spatial

structure variations.
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Figure 2.16 True and predicted values of EC and MS along the blind test for: a) EC during the 1st
iteration; b) EC during the 6th iteration; ¢) MS during the 1st iteration; d) MS during the 6th iteration.
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Figure 2.17 LIN ECa maps (mS/m) of the HCP coil configuration with 2 m offset using a median filter
of 0.3 x 0.3 m from a) the observed data b) the synthetic data predicted in the iteration 6th.
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2.6 Conclusion

This Chapter introduces an iterative geostatistical FDEM inversion method able to predict the
spatial distribution of EC and MS simultaneously in complex and heterogeneous subsurface
environments. It represents an alternative method in quantitative near-surface modelling using
FDEM survey data and can be universally applied to characterize near-surface deposits of

different types and nature, which is relevant to a wide variety of applications.

The FDEM inversion methodology was first validated using a developed three-dimensional
synthetic data set rendering realistic spatial distributions of EC and MS and then applied to a
real data set from a FDEM survey at a site containing several archaeological features that
produce strong local in-phase anomalies. In both application examples, the pointwise mean
and variance models were computed from geostatistical realizations generated during the first
and last iterations, demonstrating that the predicted models reproduce the measured EC and
MS. Also, the proposed methodology reproduces exactly the histograms retrieved from the
borehole data and tends to reproduce the variogram models imposed during the stochastic
sequential simulation and co-simulation of EC and MS.

The FDEM measurement responses derived from the ensemble of EC and MS models
predicted by the iterative FDEM inversion method were able to enclose the true FDEM data in
the synthetic case application, and in the real case application the methodology well
reproduces the FDEM observed data from the coil configurations with higher signal-to-noise
ratio. This methodology can assess the uncertainty of the FDEM responses as well the
uncertainty of the posterior distributions of EC and MS.

The proposed inversion relies on a one-dimensional forward approximation but could be
extended to more complex physical models from the imposed spatial structure. A critical aspect
for the success of the proposed inversion method is the availability of calibration data, in the
form of borehole observations and/or in-situ measurements, and their spatial distribution within
the area of interest. The accuracy of the inversion results might be affected if only a limited
number of calibration data are available, correspondingly leading to large uncertainties in the
predictions. In real applications, this sometimes can be overcome by accounting for direct

measurements from nearby areas close to the area under investigation.
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The spatial distribution of the physical properties of the first meters beneath the
earth’s surface is often complex due to its highly dynamic nature and small-scale
heterogeneities resulting from natural and anthropogenic processes. Therefore,
obtaining numerical 3D models that accurately describe the spatial distribution of
these properties is often challenging yet essential for different fields such as
environmental assessment and remediation, geoarchaeological conservation, and
precision agriculture. Frequency-domain electromagnetic (FDEM) induction
methods have proven their potential to image these properties in high (spatial)
detail because FDEM measurements are sensitive to two key soil properties:
electrical conductivity and magnetic susceptibility. Predicting subsurface
properties from FDEM data requires solving an ill-posed and nonlinear inverse
problem with multiple solutions. Recently, there has been a rapid growth of FDEM
inversion methods, which may be broadly divided into probabilistic and
deterministic methods. This chapter presents the comparison between two
stochastic FDEM inversion approaches: the Kalman ensemble generator (KEG)
and the iterative geostatistical FDEM inversion presented in Chapter 2. Both
methods are applied to a synthetic data set with spatially heterogeneous physical
properties of interest, mimicking a real landfill mining site. The predicted models
are compared with the reference models in terms of histogram and variogram
models’ reproduction and in their ability to quantify spatial uncertainty. The results
indicate the ability of both methods to predict the reference values. Although the
KEG is computationally efficient, it struggles to reproduce the extreme values. In
contrast, the geostatistical inversion approach ensures the reproduction of the
imposed histograms and variogram models in the predicted models. As the prior
information is included in both inversion methods in different ways, the pointwise
variance models computed from all of the posterior models have different
information. The synthetic data set is available to the community, so it can be used

as a benchmark for other FDEM inversion methods.

3.1 Introduction

The near surface is a complex and highly dynamic region of the subsurface due to intense
natural and anthropogenic activities. These dynamics result in complex systems, which often
are characterized by physical properties with small-scale heterogeneity. This complexity can
make sparse and discrete direct observations (e.g., boreholes) insufficient to provide sufficient

information about the spatial distribution of these properties in the horizontal direction, causing
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a simple interpolation of the borehole data to be unsuitable to reproduce the natural spatial

variability of these systems.

Contrary to direct observations, which are always scarce, several geophysical survey methods
can be used to acquire indirect, and virtually continuous, measurements of the physical
properties of the near surface. Particularly, frequency-domain electromagnetic (FDEM)
induction methods have been found to be some of the most efficient methods to reach this
objective due to their relatively low cost, operational flexibility, and sensitivity to two key
subsurface properties: electrical conductivity (EC) and magnetic susceptibility (MS). Due to
these features, FDEM induction methods have been used for, for example, environmental
assessment and remediation (Van De Vijver et al.,, 2015; Dumont et al.,, 2017), soil
characterization (e.g., Haber et al., 2004; Saey et al., 2015), groundwater characterization
(Huang et al., 2017; Rejiba et al., 2018), archaeological prospection (e.g., Bongiovanni et al.,
2008; De Smedt et al., 2011), and agricultural application (e.g., Pedrera-Parrilla et al., 2016;
Badewa et al., 2018).

Due to the indirect and band-limited nature of the FDEM data, predicting the spatial distribution
of the near-surface EC and MS from FDEM data, considering components of the signal — in
phase (IP) and quadrature phase (QP) — is an ill-posed and non-linear inverse problem with
multiple solutions. Stochastic frameworks partially address the previously mentioned
challenges of this inversion problem as such settings enable accounting for no unigqueness
and nonlinearity. For this reason, and the increase in available computational resources, the
number of publications concerning statistical-based inversion methods of FDEM data has been
growing in recent years (e.g., Minsley, 2011; Bobe et al., 2019). The FDEM inversion problem

can be mathematically summarized by Eq. 2.1.

This Chapter present the results obtained by applying two distinct stochastic FDEM inversion
methods to a highly spatially variable 3D synthetic data set composed of the reference EC and
MS models, a set of synthetic borehole data extracted from the 3D models, and the theoretical
FDEM response — IP and QP components — calculated from the EC and MS models. The
FDEM responses calculated from the EC and MS models represent the reference FDEM
measurement data mimicking a ground-based survey. The two FDEM inversion methods
applied are based on (1) the Kalman ensemble generator (KEG; Nowak, 2009; Bobe et al.,
2019) and (2) the GEMI method presented in Chapter 2.

The KEG is a Monte Carlo implementation of a Bayesian parameter estimation problem for
Gaussian probability distributions, where the covariance matrices are replaced by sample
covariance, avoiding a linearization of the forward equation (Zhou et al., 2011). The KEG uses

the update step of the ensemble Kalman filter (EnKf) (Evensen, 2003), where the KEG update
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is limited to the parameter space. For nonlinear inverse problems, the KEG gives a fast, first-

order (Gaussian) approximation to the FDEM inverse solution (Bobe et al., 2019).

The GEMI method, as expose in Chapter 2, is an iterative FDEM inversion procedure based
on the principles of global iterative geostatistical seismic inversion methods (Azevedo and
Soares, 2017), which allows simultaneous prediction of EC and MS from FDEM data. This
method has two underlying key ideas: (1) stochastic sequential simulation and co-simulation
are used for global model parameter space perturbation and (2) the convergence is ensured
by a global stochastic optimizer driven simultaneously by the misfit between reference and
synthetic FDEM data and the predicted sensitivity of EC and MS. Both inversion methods use
the same 1D forward model (Hanssens et al., 2019) as part of the inversion procedure to

calculate the synthetic FDEM response for the model realizations.

This Chapter evaluate and compare quantitatively the results of both methods in terms of
deviations from the reference model, reproduction of the global statistics and the variogram
model computed from the reference EC and MS models in the predicted EC and MS models,
and uncertainty assessment as represented by the pointwise variance of the posterior

ensemble.

3.2 Methodologies

This section describes both stochastic FDEM inversion methods, providing a detailed
description of the main principles of the KEG (Bobe et al., 2019). A detailed description of the
GEMI method can be found in section 2.2. A detailed description of the forward model used by
both methods (Hanssens et al., 2019) can be found in section 2.2.2.

3.2.1 Forward response and sensitivity modelling

The synthetic FDEM responses — IP and QP — are calculated in each method using a 1D
nonlinear forward model that allows mapping the near-surface petrophysical properties (i.e.,
EC and MS) into the data domain, since IP and QP responses pertain to both MS and EC
(Hanssens et al., 2019). This forward model replicates the components of the electromagnetic
field as acquired by a loop-loop system characterized by one transmitter coil and one or more
receiver coils. The primary field is computed by assuming an alternating current in the
transmitter coil, while the secondary field is calculated based on induction currents in relation

to the primary field.

The theoretical IP and QP responses are calculated per transmitter-receiver coil configuration

located above a |-layered model by using Hankel functions, which are numerically calculated

42



Comparison between FDEM inversion methods

by means of a Guptasarma and Singh digital filter (Guptasarma and Singh, 1997), to determine
a superposition of Bessel functions of the zeroth and/or first order that model the EM
responses. For low-frequency applications, a quasi-static approximation can be applied, so
dielectric permittivity is negligible. This assumption results in a signal mostly depending on the
spatial distribution of the subsurface EC and MS and on a lesser extent the characteristics of

the acquisition equipment.

Along with the FDEM response, the GEMI method computes the sensitivity of the forward
model with respect to changes of EC and MS at a specific layer | of the layered half-space. In
contrast to the KEG, the GEMI methodology explores this result when doing the stochastic
model update at the end of each iteration of the inversion procedure. However, this is a time-
consuming calculation with an impact on the performance of the geostatistical inversion. This
bottleneck can be mitigated by parallelizing the application of the forward model as thisis a 1D
approximation of the true three-dimensional field propagation or by making use of methods
computing approximate sensitivities for the FDEM forward problem (Farquharson and
Oldenburg, 1996; da Cruz Luz et al., 2013). A 1D forward model approximates the true
subsurface field propagation that might not be suitable for geological settings highly affected
by three-dimensional structure. A detailed mathematical description of this forward model is
available in Hanssens et al. (2019) and in section 2.2.2.

3.2.2 The Kalman ensemble generator

The KEG is a variant of the widely applied EnKf (Evensen, 2003). The EnKf was introduced as
an efficient Monte Carlo implementation of the Kalman filter (Kalman, 1960), where the
covariance equations of the Kalman filter update are replaced by sample covariance derived
from the Monte Carlo ensemble. The EnKF is based on the assumption that all probability
density functions (PDFs) involved in the update are Gaussian but allow the application to
nonlinear inversion problems (Zhou et al., 2011). Initially used for state estimation, the EnKf
was soon applied to the joint estimation of states and time-invariant physical parameter
updates (e.g., Hendricks Franssen and Kinzelbach, 2008). The EnKf update equation applied
to pure parameter estimation problems was introduced by Nowak (2009) and called KEG

because the filter function of the EnKf was ignored.
Using the KEG, a measurement response is simulated as follows:
déim = g(mérior) + €errs i€ {1, ---vnens}v (3-1)

where €., refers to the measurement error and approximations of the true physical

phenomena made during data processing and modelling, n., is the size of the ensemble, and
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m! and d! are the realizations of the Gaussian prior PDF and Gaussian observed data PDF,

respectively. The KEG update is given by (Evensen, 2003):
ﬁli = m;.)rior + Cfng(cgg + C%)_l ' (di - g(mérior))' (3-2)

for i € {1,...,n.,s}; Where C% is the covariance matrix of random observation errors. The
covariance matrices Cj,, € R™ar*Mbs and (g, € R™bs*Mbs are derived from the prior
ensemble captured by a matrix A € R™ar*"ens and the forward response ensemble captured
by a matrix G € R™obs*Mens with n,,s being the number of observations and n,,, being the
number of model parameters. Furthermore, the matrices A’ and ¢’ are defined as the mean-
corrected versions of the matrices A and G, where A’ is derived using the matrix of ensemble

means:

A=41 (3.3)

Nens’

where 1, R(ens*Mens) js the matrix where all elements equal 1/n,, (Evensen, 2003). Using

the matrix of ensemble means, the mean-corrected matrix is derived by computing:
A=A-A. (3.4)

Analogously, matrix G’ is derived from matrix G. Using the previously defined matrices, the

computation of the covariance matrices is given by:

1

Nens—1

1

Cog=AGT and C¢=GG" (3.5)

Nens—1

An efficient numerical analysis scheme for the computation of the update is given by Nowak
(2009) and outlined in detail for the inversion of FDEM data in Bobe et al. (2019). In contrast
to the strict 1D formulation given in Bobe et al. (2019), in this work (Figure 3.1) the prior
covariance matrix is defined by 2D correlation functions (i.e., in the vertical and horizontal
directions) as defined by a variogram model manually fitted to experimental variograms
calculated from the borehole data. The borehole data are considered to be hard data without
uncertainty. This is an approach similar to geostatistical simulation (Deutsch and Journel,
1998). The variogram models (i.e., spatial covariance matrices) used in this work are shown

in section 3.3.
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Figure 3.1 Schematic representation of the noniterative constrained KEG method.

3.2.3 GEMIlinversion

The GEMI method (Figure 3.2) is an iterative inversion approach, which uses geostatistical
simulation, namely, direct sequential simulation and co-simulation (Soares, 2001), to perturb
the model parameter space, and uses the existing direct in situ measurements (e.g., data from
borehole logs) as hard data without uncertainty. A variogram model is imposed during the
geostatistical simulation to describe the expected spatial continuity pattern of EC and MS in
three dimensions (Shamsipour et al., 2012). This variogram model is fitted to the experimental
variogram calculated from the hard data but might be adjusted according to the expert
knowledge of the expected geologic background. In all realizations generated during the
iterative procedure, the hard data are reproduced exactly at their location (i.e., no uncertainty
is considered at the locations of the direct observations) as well as their distributions (i.e., the
histogram) and the spatial continuity pattern as defined by the variogram model. A detailed

description of the GEMI method can be found in section 2.2.
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Figure 3.2 Simplified schematic representation of the iterative GEMI method.

3.3 Application

3.3.1 Data set description

A realistic 3D synthetic data set based on the synthetic data set described in section 2.3.1,
was used as a benchmark between alternative FDEM inversion methods. Although this data
set was modeled with some of the geologic samples used to develop the synthetic data set
from section 2.3.1, and collected at the same mine tailing, the data set presented in this
Chapter was created with the goal of mimicking a three-dimensional larger mine tailing, with
more spatial continuity of the properties of interest. This approach enabled to test the
robustness of the GEMI method, described in Chapter 2, when applied to different subsurface

environments, in scale and heterogeneity.

Direct measurements of porosity and particle density were used to generate a 3D synthetic
porosity subsurface model using stochastic sequential simulation (Deutsch and Journel, 1998)
and imposing an omnidirectional spherical variogram model in the horizontal direction with a
range of 10 m and a range of 1 m in the vertical direction and a nugget effect of 20% of the
total variance. We modeled these variogram models using exclusively the location of the
samples collected at the mine tailing. The model has a dimension of 150 m x 200 m x 4 m

(i.e., length, width, and depth) with a cell size of 0.5 m x 0.5 m x 0.1 m, respectively. To ensure
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a realistic relationship between properties, particle density and water content models were
generated using stochastic sequential co-simulation (Deutsch and Journel, 1998) conditioned
to the porosity model and imposing an omnidirectional spherical variogram model with a
horizontal range of 10 m and a vertical range of 1 m and a nugget effect of 20% of the total
variance for the particle density and an omnidirectional spherical variogram model with a
horizontal range of 16 m and a vertical range of 2 m and a nugget effect of 10% of the total

variance for the water content.

EC and MS models were then derived from these 3D physical property models and the Archie
equation (Archie, 1942) and imposing an omnidirectional spherical variogram model with a
horizontal range of 20 m and a vertical range of 4 m and a nugget effect of 10% of the total

variance for the MS models.

From the resulting 3D models, were selected nine locations to represent synthetic boreholes
that were used as in situ data conditioning the inversion. The corresponding observed FDEM
data were obtained using the same forward model (Hanssens et al., 2019) as in the inversion
procedures described in section 2.2.2, where the 1D forward model responses were stitched
for forming the FDEM measurement transect following the borehole locations (Figure 3.3). The
synthetic FDEM values were generated replicating one of the most common sensors for these
types of near-surface surveys, namely, the DUALEM-421S (DUALEM Inc., Milton, Canada),
considering two loop-loop coil orientations, a horizontal coplanar (HCP) and a perpendicular
one (PRP), with the normal three offsets per coil orientation for this equipment, 1, 2, and 4 m
for HCP and 1.1, 2.1, and 4.1 m for PRP, plus an extra offset per coil orientation, 10 m for HCP
and 10.1 m for PRP, ensuring a theoretically larger depth of investigation (DOI).

This data set is considered as the reference to assess the performance of the GEMI and KEG
inversion methods. The data set is available freely (http:/doi.org/10.5281/zenodo0.5116420)

and can be used to assess the advantages and disadvantages of different methods.

For illustration purposes, the comparison between the two probabilistic inversion methods is
shown for a 2D profile extracted from the true 3D model. The selected 2D profile was aligned
with the nine boreholes where EC and MS logs were extracted (Figure 3.3). This geometry
represents an ideal scenario in which the direct subsurface measurements are regularly

spaced along the geophysical profile.
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Figure 3.3 Cross sections extracted from the reference models of (a) EC and (b) MS. The black dots

represent the nine wells. (c) Location of the nine wells in the EC model map.

3.3.2 Inversion parametrization

The GEMI ran with six iterations and generated sets of 32 realizations of EC and MS per
iteration. EC models were simulated and cosimulated imposing an omnidirectional spherical
variogram model with a horizontal range of 10 m and a vertical range of 4 m and a nugget
effect of 20% of the total variance of the data. MS models were simulated and cosimulated
imposing an omnidirectional spherical variogram model in the horizontal direction with a range
of 40 m, a vertical range of 30 m, and a nugget effect of 10% of the total variance of the data.
The variogram models were calculated relying exclusively on the borehole data set to mimic a
real application scenario (Table 3.1). Consequently, these variogram models are not the same
as those used in the true model generation. In addition to the borehole data, no other spatial

constraint was considered in the geostatistical inversion.

Table 3.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total

variance of the data, for the variogram models used to simulate and co-simulate EC and MS.

Omnidirectional spherical variogram | EC models | MS models
Horizontal range 10 m 40 m
Vertical range 4m 30m
Nugget effect 20 % 10 %

The KEG used a prior ensemble with 500 models of EC and MS. This ensemble was generated
using direct sequential simulation as the model perturbation technique of GEMI. The same
parameterization in terms of the number of experimental data and variogram models used to
constrain the GEMI was considered to create this ensemble of realizations. These models are
equivalent to those generated in the first iteration of the GEMI. They reproduce the borehole
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data at the corresponding locations and the variogram models imposed during the model
simulation. In this way, the prior information of both inversion methods is the same. However,
although the GEMI is an iterative procedure, the KEG infers the posterior distribution in a
single-step update. A cross section extracted from the pointwise average EC and MS models
computed from the prior ensemble is shown in Figure 3.4. All realizations match the true
borehole data. The influence of these data in the horizontal direction is dependent on the
horizontal variogram model. For distances greater than the horizontal range, the simulated

values tend to be the mean value of the observed data.
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Figure 3.4 Cross sections extracted from the pointwise average model of the prior ensemble for (a)
EC and (b) MS.

The same effect is observed from the pointwise variance models computed from this ensemble
of models. As the stochastic sequential simulations are locally constrained by the borehole
data, the variance is null at these locations (Figure 3.5). The synthetic response of the prior
ensemble used in both inversion methods is shown in Figure 3.6. As the prior realizations were
generated with geostatistical simulation, and we do not consider noise in this synthetic
application, the synthetic responses calculated from the prior models do exactly reproduce the
true measurement responses for the borehole locations. For other locations, the synthetic
response of the pointwise average EC and MS models fails to reproduce the observed data.
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Figure 3.5 Cross sections from the variance of the prior ensemble for (a) EC and (b) MS.
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Figure 3.6 Prior synthetic IP and QP data for the 2 m HCP coil configuration, per model realization
and the mean of the model realizations (grey and blue, respectively), compared with reference IP
and QP data (red).

3.3.3 Results

The mismatch between the observed and predicted IP and QP data can be assessed in
Figures 3.7 and 3.8, along the same 2D profile shown in Figure 3.3. For the sake of simplicity,
is shown the results obtained for the 2 m HCP coil configuration. For the other coil
configurations, similar results regarding the convergency of the data were obtained. Figures
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3.7 and 3.8 show the synthetic response obtained from all the models of the posterior
distribution predicted with the KEG and the ensemble of models cosimulated in the last iteration
of the GEMI.
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Figure 3.7 Synthetic IP and QP data for the 2 m HCP coil configuration, per model realization and
the mean of the model realizations (grey and blue, respectively) calculated for the KEG, compared
with reference IP and QP data (red).

IP response from GEMI, HCP 2 m

---Hard-data loc | 5gg
——Synthetic data
" —FW of mean
2 *x10' ‘ QP response from GEMI, HCF 2m ‘ __|—True data
| | | | Fo |
| 1 I 1 I 1 I
| I I 1 | I I
| 1, I 1 I 1 I
15[ | j i i | | i .
£ 5 ‘ : : ‘ : |
a i I il | ) | 1
[=% | 1 “ I W 1
S . ! I I I 4
1% i i ; i i 1
u | I I | 1 l
[ | 1 1 I o I
| ! 1 I I 1 | I
| ; : i | i ; ' i
0.5 1 L | 1 1 I 1 1 1 1 1

0 50 100 150 200
Distance (m)

Figure 3.8 Synthetic IP and QP data for the 2 m HCP coil configuration, per model realization and
the mean of the model realizations (grey and blue, respectively) calculated for the GEMI method,

compared with reference IP and QP data (red).
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The IP and QP responses predicted by the GEMI have a closer match than those predicted
with the KEG concerning two aspects: (1) the predicted IP and QP calculated from the
pointwise average model of EC and MS and (2) the uncertainty envelope, as represented by
the synthetic response of all the realizations sampled from the posterior distributions (i.e., the
grey lines in Figures 3.7 and 3.8), of the GEMI is tighter and better encapsulates the observed
IP and QP data. Figure 3.9 summarizes the match between the true and predicted data, which

supports the interpretation provided in (1).
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Figure 3.9 Biplots between the reference IP and QP data and the synthetic IP and QP data for the 2
m HCP coil configuration, calculated from the mean of the model realizations, for each method.

To compare the performance of the two methods with respect to parameter model
reproduction, Figure 3.10 shows the posterior histograms of EC and MS of a single realization
for the two methods. Both methods sufficiently reproduce the overall shape of the borehole
data histograms. However, although the GEMI reproduces exactly the minimum and maximum
values of the true distribution, the KEG predicts values not observed in the direct
measurements and is characterized by longer tails in the predicted distributions. This
difference is expected as by definition the stochastic sequential simulation method applied by
GEMI uses a model perturbation technique which ensures the exact reproduction of extreme
values. In addition, due to the Gaussian assumption of the KEG, the retrieved histograms from

the posterior models are more Gaussian than those obtained from the GEMI.

Figures 3.11 and 3.12 present the comparison between the predicted models of both inversion
methods using the posterior distribution of EC and MS from one single realization of each
inversion method, which remains the same throughout the assessing analysis. Both models
predict similar spatial patterns at the large scale for EC and MS but exhibit differences at the

small scale and in the deeper part of the model. Consistently with what was observed for the
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comparison of the histograms (Figure 3.10), the KEG predicts more pronounced local

extremes and the GEMI predicts more accurately local distributions and spatial pattern.
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Figure 3.10 Comparison between the histograms of the reference EC and a single realization

generated by (a) the KEG and (c) the GEMI. Comparison between the histograms of the reference
MS and a single realization generated by (b) the KEG and (d) the GEMI.
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Figure 3.11 Vertical 2D section extracted from a realization of the posterior distribution obtained by
the KEG for (a) EC and (b) MS.
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Figure 3.12 Vertical 2D section extracted from a realization of the posterior distribution obtained by
the GEMI for (a) EC and (b) MS.

As an absolute comparison between single realizations is difficult and there is no equivalency
between realizations sampled from the GEMI and the KEG, Figures 3.13 and 3.14 presents
the pointwise average models computed from all the realizations from the posterior distribution
predicted by both methods, with relatively large differences between the pointwise average
models.
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Figure 3.13 Two-dimensional mean model of (a) EC and (b) MS using the KEG method.
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Figure 3.14 Two-dimensional mean model of (a) EC and (b) MS using the GEMI method.

The differences are further explored by comparing the residuals (i.e., the absolute differences
between a single realization or the pointwise mean model of the ensemble realizations on the
one hand and the reference EC and MS models on the other) in terms of their spatial
distribution over the selected profile (Figures 3.15, 3.16, 3.17, and 3.18) and their global
distribution based on the histogram (Figure 3.19).
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Figure 3.15 Two-dimensional difference between one model computed from the posterior

realizations and the reference model of EC using (a) KEG and (b) GEMI.
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Figure 3.16 Two-dimensional difference between the mean model computed from the posterior

realizations and the reference model of EC using (a) KEG and (b) GEMI.
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Figure 3.17 Two-dimensional difference between one model computed from the posterior

realizations and the reference model of MS using (a) KEG and (b) GEMI.

In addition, Figures 3.20 and 3.21 show the biplots between the reference EC and MS models
and the simulated EC and MS models. The profiles of the residuals of EC show a spatial
structure in both methods, with low residuals where the reference model has low values and
higher residuals where high reference values of EC occur (Figures 3.15 and 3.16). In line with
the above, the histograms of the residuals EC for a single model realization are similar for both
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methods but with the KEG predicting larger extremes (which can be larger than the maxima in
the reference models). This effect is illustrated in the biplots between the reference EC model

and the predicted EC models (Figure 3.20), and a tail of high residual values (Figure 3.19).
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Figure 3.18 Two-dimensional difference between the mean model computed from the posterior
realizations and the reference model of MS using (a) KEG and (b) GEMI.
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Figure 3.19 Comparison between the histograms of the residuals between one model computed from
the posterior realizations and the reference model of (a) EC and (b) MS, and the residuals between
the mean model computed from the posterior realizations and the reference model of (c) EC and (d)
MS, using the KEG and GEMI.
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Figure 3.20 Biplots between the reference model of EC and (a) one model and (b) the mean model

computed from the posterior realizations, from each method.
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Figure 3.21 Biplots between the reference model of MS and (a) one model and (b) the mean model
computed from the posterior realizations, from each method.

The profiles of the residuals of MS realizations of both methods show a low spatial structure
correlation when comparing with the reference MS model (Figures 3.17 and 3.18), and the
histograms and the biplots show similarities between KEG and GEMI, with the KEG predicting
larger extremes (Figures 3.19 and 3.21), yet the distribution has a narrower peak for KEG, so
small residuals are more frequently occurring than in the distribution obtained for the GEMI,
but KEG again exhibits a tail of high residual values visible in the histograms and the biplots
(Figures 3.19 and 3.21). These differences are due to the nature of the stochastic update of
both inversion methods; because the KEG uses Gaussian statistics, the probability for EC and
MS values beyond the prior ensemble values derived from the boreholes data is never zero.
When comparing the mean of the ensemble residuals (Figures 3.16 and 3.18), i.e., absolute
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differences between the mean models (Figures 3.13 and 3.14) and the reference EC and MS
models (Figure 3.3), the same spatial structure in both methods is shown but the mean of the
500 realizations models of KEG reproduce better the reference model of EC and exhibit large
residuals less frequently when compared with GEMI, which can derive from further exploration
by GEMI of the model parameter space. However, it should be mentioned here that for the
GEMI method the mean residuals are computed based on 32 model realizations only.
Regarding the residuals of the average MS models, the same conclusion arises as that
reached when only one MS realization of both methods is used, as described previously.

3.4 Discussion

Both stochastic inversion methods use computed FDEM signals to simultaneously predict the
spatial distribution of the subsurface EC and MS models. The GEMI method does not assume
any parametric distribution of the properties of interest and uses stochastic sequential
simulation and co-simulation in a convergent and iterative procedure. However, it requires the
existence of borehole log data of EC and MS, which might not always be available. The KEG
method uses the update step of the EnKf to update a prior ensemble assimilating the

geophysical measurement data.

The synthetic FDEM data generated from the inversion results encapsulate the reference
observed FDEM data for both methods, but the GEMI method more closely resembles the
reference observed QP and IP data along the cross section when comparing with the synthetic
FDEM data calculated from the model realizations. For the GEMI method, 6.25% of the
reference IP data and 21.75% of the QP data along the cross section were outside the range
of the computed synthetic data, whereas for the KEG method we found 27.5% of the IP data
and 24.75% of the QP data to be outside (Figures 3.7 and 3.8). Both methods predict EC and
MS models that match the main spatial structures of the reference ones (Figures 3.11 and
3.12). However, as already mentioned previously, there are differences between the spatial
continuity pattern of the predicted models with both methods. These differences can be
assessed by modelling the horizontal and vertical variograms from a single realization sampled
from the predicted posterior distribution and comparing them with the true variogram models

and those obtained from the borehole data exclusively (Figures 3.22 and 3.23).

The set of borehole data for EC captures the spatial continuity pattern of the reference EC
model in the horizontal and vertical directions (Figure 3.22). The best-fit inverted model
predicted with GEMI exhibits a similar spatial behavior in terms of variogram range, sill, and
nugget effect when compared with the reference models for both directions. This reproduction

is expected as by definition stochastic sequential simulation and co-simulation methods, which
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are used as model perturbation and stochastic update, do ensure the reproduction of the
variogram models imposed. However, to ensure the match with the observed FDEM data, the
iterative inversion procedure does need to perturb the imposed variogram range in the vertical
direction. This results in the range of the vertical variogram obtained from the best-fit inverted
model being smaller than the true one. On the other hand, the variogram models obtained from
the inverted models with the KEG have higher sill (i.e., variance), shorter ranges, and larger
variability at the small scale as represented by the nugget effect. The higher sill and nugget
effect are consistent with the occurrence of larger extremes as discussed previously (Figures
3.10 and 3.19). This behavior is expected because the KEG update at a given location is
independent of the updated values at the neighboring locations. The larger nugget effect and
smaller variogram ranges result from this update procedure, which does not account for spatial
correlation. In addition, unlike the more traditional inversion Bayesian update methodologies,
which are done on an average model (i.e., a priori model), this KEG update is done on
simulated realizations, which further enhances the nugget effect of resulting models.

===True Model

—— Hard-Data
—— GEMI Model 20 30 40 50 60

=—KEG Model lag distance h (m)
Sill, True Model

= =8ill, Hard-Data
= = Sill, GEMI Model
- = Sill, KEG Model

1 1.5 2 25 3 35
lag distance h (m)

Figure 3.22 (a) Horizontal and (b) vertical variogram models for EC calculated from the true models,
the borehole data and one realization from the posterior ensemble predicted with KEG and with
GEMI.

Contrary to EC, for MS the sparse borehole data set is not able to reproduce the true variogram
model of the reference 3D models of EC and MS in the horizontal and vertical directions (Figure
3.23). This behavior represents an obstacle for the GEMI because we use the variogram model
retrieved from the borehole data in the stochastic sequential simulation and co-simulation of
MS. If the a priori data are not similar to the reference model, this inversion method will struggle
to predict the true spatial pattern. Azevedo and Demyanov (2019) propose a stochastic

optimization approach to account for the uncertainty in variogram models. Figures 3.19, 3.20,
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and 3.21 illustrate the potential of the KEG to move away from the spatial continuity pattern of
the a priori ensemble of models toward the true one, which indicates that the KEG appears to

be more flexible in the presence of non-exact prior information.
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Figure 3.23 (a) Horizontal and (b) vertical variogram models for MS calculated from the true models,
the borehole data and one realization from the posterior ensemble predicted with KEG and with
GEMI.

The synthetic application example shown in this Chapter uses a large number of boreholes
with a regular and small spacing relative to the range of the underlying variogram. This setup
makes the simulated models (i.e., the a priori ensemble of models) very dependent on the
conditioning borehole data. This is a very appropriate situation for updating by KEG because
the simulated models are already close to the reference values. Reducing the number of

boreholes might result in considerable differences by both methods considered herein.

In addition, the same forward model was used to generate the reference FDEM data and within
the inversion procedures. This assumption implies that at the borehole locations there is no
uncertainty. In a real case study, when one applies the KEG update of a value at the borehole
location, the IP and QP values, obtained by the forward model, are not equal to the real values
at borehole locations. Hence, in real applications, the updated EC and MS values of the final

models will not honor the experimental values.

Finally, is presented the comparison of the spatial uncertainty assessed with both methods by
computing the pointwise variance of the ensemble of models of EC and MS predicted with the
KEG and the GEMI (Figures 3.24 and 3.25). Both methods honor exactly the borehole data,
illustrated with null variance at these locations. However, the spatial behavior of both methods

is quite different. For EC, in the models obtained with the GEMI, there is a clear influence of
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the depth of sensitivity (sensgc), whereas the predictions with the KEG have smaller variance

in the first half-meter (Figure 3.24).
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Figure 3.24 Pointwise variance model of EC obtained from the predicted models with (a) KEG and

(b) GEMI.
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Figure 3.25 Pointwise variance model of MS obtained from the predicted models with (a) KEG and

(b) GEMI.
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For KEG, there seems to be a more pronounced proportionality effect, i.e., higher variance
associated with higher predicted values of EC. This behavior can be explained by visual
inspection of the prior model. Except in very close vicinity of the boreholes, the prior model’s
mean and variance EC are largely uniform. For MS, the prior model's mean is less uniform
because larger correlation lengths are defined a priori and extreme values from the virtual
boreholes have a larger influence in the prior model mean. For the uncertainty associated with
the predicted MS, the KEG has a clear depth dependency, whereas the spatial uncertainty
assessed with the GEMI appears to be unstructured and uninformative (Figure 3.25).

Regarding computational time performance, the KEG inversion method is more efficient
because it is a single-step update method, and there is no need to compute the sensitivity for
any of the ensemble’s subsurface prior model realizations. The KEG typically works with larger
ensemble sizes sampled from a prior model (500 realizations) as compared with the relatively
low number of model realizations (32 realizations) considered in the individual iterations of the
GEMI. However, the GEMI updates do take sensitivity into account, involving additional
forward model computations necessary for the sensitivity derivation.

The GEMI inversion was performed on a workstation with Intel Core i7 3.40 GHz CPU and 16
GB RAM. The total computational time using the GEMI inversion procedure (32 x 6 realization
models of EC and MS) was 21 h. The KEG inversion was performed on a personal computer
with Intel Core i5 1.9 GHz and 8 GB RAM. The KEG inversion took 152 min, plus one additional

hour for the prior ensemble simulation.

Both stochastic inversion methods considered are based on a 1D forward model. The same
approximation was used to generate the synthetic data used in the application example shown
herein. A 1D forward model represents a simplification of the complex 3D subsurface field
propagation. In addition, by using the same forward model to build the synthetic and as part of
the inversion methods, was not accounted the uncertainty related to numerical approximations.
Three-dimensional forward models are required for complex subsurface geology (i.e., geology
with significant 3D structure) because 1D approaches are not able to properly capture the
complex subsurface field propagation and predict reliable inverse models, increasing the
computational costs of both inversion methods. However, the main conclusions draw from the
application examples shown in this Chapter would hold as the a priori information related to

the spatial continuity patterns of EC and MS is not changed.
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3.5 Conclusion

In this Chapter is presented a comparison between two different statistical-based FDEM
inversion methods: the KEG and GEMI method. These inversion methods are applied to a

freely available 3D synthetic data set rendering realistic spatial distributions of EC and MS.

The assessment of both methods was developed by comparing the predictions of EC and MS
using a single realization selected from the posterior distribution and the pointwise mean and
variance models computed from the posterior. The KEG frequently predicts values of EC and
MS beyond the minimum and maximum values observed in the prior ensemble derived from
the borehole data, whereas the GEMI reproduces exactly the histograms retrieved from the
borehole data. This effect also is observed locally when computing the residuals between the
reference and the predicted EC and MS models. Similarly, the GEMI tends to reproduce the
variogram models imposed during the stochastic sequential simulation and co-simulation of
EC and MS, whereas the KEG has larger degree of freedom to perturb the spatial continuity
pattern. The latter might be important when the knowledge about the spatial distribution of the
phenomena to be modeled is largely unknown.

Overall, both methods succeed in simultaneously reproducing subsurface EC and MS from
FDEM data, but KEG results in more accurate reconstruction of the MS, considering that
smaller residuals are more frequent. Overall, by comparing the histograms of the residuals of
the pointwise average models, the KEG shows more smaller residuals more frequently.
However, for the MS predictions, the GEMI method delivers very large residuals less frequently
than the KEG. Another advantage of the GEMI method shows when an FDEM measurement
response is computed from the resulting EC and MS subsurface models. The FDEM response
derived from the GEMI subsurface model is much closer to the reference data than its
equivalent for the KEG method.

The comparison of the inversion’s uncertainty assessment is somewhat difficult because KEG
and GEMI rely on different concepts regarding the interpretation of inverse model uncertainty.
Because the uncertainty in the measurement data is uniform for the entire data set, the KEG
shows larger uncertainty where the posterior model is more different from the prior model. For
the GEMI, a link between the shape of measurement sensitivity and inverse model variance is

partially observed.

Data associated with this research are available and can be accessed via the following URL:
http://doi.org/10.5281/zen0do.5116420 .
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Chapter 4

High-resolution characterization of near-surface systems is crucial for a variety of
subsurface applications. Frequency-domain electromagnetic induction (FDEM)
has been widely used in near-surface characterization when compared with other
geophysical methods due to its flexibility in acquisition and the ability to survey
large areas with high-resolution but with relatively low costs. FDEM measurements
are sensitive to subsurface electrical conductivity (EC) and magnetic susceptibility
(MS). However, the prediction of these properties requires solving a geophysical
inverse problem. This work combines ensemble smoother with multiple data
assimilation (ES-MDA) and model re-parameterization via randomized tensor
decomposition (RTD) to simultaneously predict electrical conductivity and
magnetic susceptibility from measured FDEM data. ES-MDA is an iterative data
assimilation method, which can be applied to nonlinear forward operators and
provides multiple posterior realizations conditioned on the geophysical
measurements to evaluate the model uncertainty. However, its application is
usually computationally prohibitive for large-scale three-dimensional problems. To
overcome this limitation, the model parameters are reduced using RTD to perform
the inversion in the low-dimensional model space. The method is applied to
synthetic and noisy real data sets. In the synthetic application example, the
predicted posterior realizations illustrate the ability of the proposed method to
recover the true models of EC and MS accurately. The real case application
comprises FDEM data acquired over an arable land characterized by quaternary
siliciclastic deposits with geoarchaeological features. The performance of the
inversion method is assessed at a borehole location not used to constrain the
inversion. The inverted models do capture the available log data, illustrating the

applicability of the inversion method to noisy real data.

4.1 Introduction

Detailed modelling and characterization of near-surface is key to several applications, such as
sustainable development of soil studies, archaeology, and groundwater management (De
Smedt et al., 2013; Delefortrie et al., 2014; Simon et al., 2015). This is a challenging task as
the near-surface is often characterized by strongly heterogeneous geological properties as the
result of complex interacting processes of both natural and anthropogenic origins, which act at

different spatiotemporal scales (Morel and Heinrich, 2008).

Due to the complex nature and dynamics of these systems, its characterization using

traditional interpolation methods of sparse and discrete direct observations (e.g., borehole
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data) is not suitable to capture the full spatial variability of the system. Recently, there has
been an increased interest in using geophysical data to characterize the near-surface. This is
mainly due to the ability to acquire high spatial resolution data over large areas at relatively
low-cost, the usability of the existing equipment in different types of terrain, and the ability to
image subsurface properties (Everett, 2013) that can be interpreted in terms of geological and

physical processes.

Among the most common geophysical methods, frequency-domain electromagnetic induction
(FDEM) allows collecting high-resolution data sets timely and efficiently (Hanssens et al.,
2020), by providing indirect measurements of two key near-surface properties: electrical
conductivity (EC); and magnetic susceptibility (MS). From a simplistic perspective, EC relates
mainly to soil salinity, texture, organic matter, moisture content, and bulk density (Doolittle and
Brevik, 2014; Everett, 2013; Islam et al., 2014a; Islam et al., 2014b, Reynolds, 2011), while
MS tends to be related to the mineralogy of the near-surface rocks, and anthropogenic features
(Van De Vijver, 2017). Nevertheless, all these geological properties affect jointly EC and MS.

However, predicting the spatial distribution of EC and MS from the observed FDEM data
requires solving a non-linear, ill-conditioned inverse problem with multiple solutions due to
measurement errors and uncertainties in the model and observations (Tarantola, 2005), the
band-limited nature and resolution of the FDEM data, noise and physical assumptions
associated with the forward operators (Qiu et al., 2020). The recorded electromagnetic fields,
the in-phase (IP) and quadrature-phase (QP) signal components, are related to EC and MS
through a forward operator F that is mathematically described in Equation 2.1. The operator F
is commonly approximated using 1D or 2D numerical models, due to prohibitive computational

costs of three-dimensional forward models (Li et al., 2019).

Deterministic algorithms as well as stochastic sampling and optimization methods have been
proposed to solve geophysical inverse problems (Tarantola, 2005). Among stochastic
approaches the most commonly used methods are Markov chain Monte Carlo (McMC) and
ensemble-based methods. FDEM inversion methods for near-surface characterization are
generally based on deterministic approaches. These methods have been used successfully
applied to model the spatial distribution EC and MS in the near-surface (Deidda et al., 2017,
Farquharson et al., 2003; Guillemoteau et al., 2016). However, deterministic inversion methods
predict a single best-fit model and have limited capabilities for uncertainty assessment. Due to
the non-uniqueness of the solution of the inversion problem, stochastic inversion methods are
generally preferable. In the stochastic approach, the solution can be expressed as an
ensemble of models that fit the data within a tolerance and whose variability represents the

uncertainty of the solution, which can be used to make informed decisions and quantify risks.
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Stochastic geophysical inverse methods under a Gaussian assumption comprise the so-called
pilot points method that use sequential geostatistical resampling techniques (e.g., Mariethoz
etal., 2010; Alcolea et al., 2010; Fu and Gomez-Hernandez, 2009; Hansen et al., 2012; Zahner
et al., 2016; Jaggli et al., 2017), principal component geostatistical approach (Lee and
Kitanidis, 2014), methods based on circulant embedding of the covariance matrix (e.g.,
Hansen et al., 2012, Laloy et al., 2015); and methods that allow for jointly inferring the spatial
correlation model (i.e., mean and variogram) together with the two- and three-dimensional
spatial distribution of the property field values of interest (Laloy et al., 2015; Hunziker et al.,
2017; Wang et al., 2022).

The available literature includes statistical approaches to FDEM inversion, but these are limited
to the prediction of EC (Moghadas and Vrugt, 2019) or rely on Gaussian assumptions for the
distribution of EC and MS. Trans-dimensional Bayesian inversion of electromagnetic data and
Markov chain Monte Carlo methods have been proposed in (Blatter et al., 2018; Minsley, 2011;
Ray and Key, 2012). These approaches generally allow an accurate quantification of the
posterior distribution; however, the computational cost of the sampling and optimization is
generally unfeasible for large geophysical datasets. Ensemble-based methods, such as
ensemble smoother and ensemble Kalman filter (Evensen, 2009), provide a reliable alternative
to McMC methods, by finding a compromise between model accuracy and computational cost.
For example, the Kalman ensemble generator (KEG) method (Bobe et al., 2019) detailed in
section 3.2.1, provides such statistical framework for FDEM inversion. Most publications on
the application of machine learning in geophysical inverse problem adopt deep learning
algorithms to approximate the forward model and reduce the problem dimension and the
computational cost (e.g., Manassero et al., 2020; Puzyrev and Swidinsky, 2021; Qi et al., 2019)
or use them directly to approximate the inverse function and replace deterministic inversion
methods (Hashemian et al., 2021; Li et al., 2021). For example, (Manassero et al., 2020)

propose a reduced-order approach for the inversion of electromagnetic data.

The techniques to reduce the computational time in high-dimensional probabilistic inverse
problems, can be generally divided in three categories: (1) approximation of the forward
operator (i.e., surrogate modelling), (2) dimensionality reduction of the model and/or data
spaces by re-parameterization, and (3) approximating the posterior distribution by making
certain assumptions about its probability distribution. The method presented in this Chapter
explores the points (2) and (3) by combining stochastic inversion with dimensionality reduction
techniques to perform the inversion in a lower dimensional space. We propose a stochastic
nonlinear method based on the ensemble smoother with multiple data assimilation (ES-MDA)
(Emerick and Reynolds, 2013) to invert the FDEM data for EC and MS. ES-MDA is a derivative-

free optimization method that proves useful when the code of forward simulators is
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inaccessible, or the sensitivity matrix is challenging to derive. Unlike linear Bayesian methods,
ES-MDA does not require a linear approximation of the forward operator, making it
advantageous in improving inversion results for non-linear cases. However, ES-MDA poses
prohibitive computational costs in large geological models. To address this challenge, is
proposed the use of a randomized tensor decomposition (RTD) to sparsely re-parameterize
the models and update the model parameters in the low-dimensional space. RTD is a high-
order linear reduction method that can recover spatial structures between multiple dimensions
of geological models and track uncertainty propagation during model order reduction.
Compared with deep-learning-based methods, RTD is easier to integrate into the inversion
workflow and is not limited by computing devices.

The method presented in this Chapter is first applied in a synthetic two-dimensional data set
to validate the results obtained and then in a three-dimensional real case application to assess
its performance in data contaminated with noise. The next sections describe in detail the
modelling steps of the proposed methodology and the results of its application to the synthetic
and real data sets.

4.2 Methodology

The proposed FDEM inversion method includes the integration of the forward model in section
4.2.1, the inverse method in section 4.2.2, and the model reparameterization in section 4.2.3.

4.2.1 Forward response and sensitivity modelling

The FDEM data comprise both the in-phase (IP) and quadrature-phase (QP) components of
the electromagnetic field, generally acquired by a loop-loop system. To link the unknown near-
surface properties (i.e., EC and MS) to the measured data, we use a one-dimensional
nonlinear approximation of the propagated electromagnetic field (Hanssens et al., 2019). This
forward operator calculates the IP and QP responses per transmitter-receiver coil offset
located above a model with n layers. In addition to the IP and QP responses, the forward
operator also calculates the sensitivity analysis through changes in the properties of interest
at depth. A detailed description of the forward model (Hanssens et al., 2019) used in this

method can be found in section 2.2.2.

In this work, geostatistical simulations are used to generate high-resolution subsurface models
in 3D, then the forward geophysical model described in section 2.2.2 and based on a 1D
approximation is applied to compute the IP and QP predictions, and the simulated models are

then updated in 3D using the ES-MDA. The simulation and update of the models is done in
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3D. To reduce the computational cost, a dimensionality reduction approach is proposed to
perform the updating in a lower dimensional space and increase the computational efficiency
(Liu et al., 2022a). The use of the 1D forward model is one of the main limitations of this
approach as it is unable to capture the propagation of the EM field in the three directions of
space; however, replacing the 1D approximation would dramatically increase the

computational cost of the method proposed in this Chapter.

4.2.2 Inverse method

For the inversion, numerical approximate methods are adopted for the solution of the
associated inverse problem. Stochastic method is applied, namely the ES-MDA (Emerick and
Reynolds, 2013; Grana et al., 2021), for its computing efficiency and the ability to quantify
uncertainty. ES-MDA is derived from Kalman Filter (Evensen, 2009) to overcome the limitation
of the operator linearization in non-linear inverse problems and to improve the computational
efficiency in large-scale optimization and inverse problems. Like the standard Kalman Filter
(KF), the ES-MDA is based on a Bayesian updating approach and the estimation of model
parameters from measurements includes two steps: prediction by the forward model from the
prior realizations, and correction by the measurement according to the likelihood function. In
the ES-MDA, the Kalman gain is empirically estimated from the ensemble of prior models. The
ES-MDA updating equation of model parameters m of ES-MDA can be written as:

m} = m! +K(d; — d?), (4.1)

for j =1,..,N.,with N, being the ensemble size, where mJ’.’ represents the prior model

parameters, m;" represents the updated model parameters obtained by assimilating the
measurements, d is the predicted data obtained from m} through the forward operator F, d;

is the observed data with random perturbation according to the distribution of the noise e, and
K € R¥» x RNe is the Kalman gain matrix. In the ES-MDA, the Kalman gain matrix is

empirically estimated from the prior models as
K=CP,(Ch+Cd7 1, (4.2)
1 e _ <
Cha = —Ne_lZﬂ-V:l(m,’-’ —m?)(d} —d")", (4.3)
T

ch, = ﬁzygl(d]’? - &)(d? - dv) (4.4)

where CF, € RV» x RVa represents the cross-covariance matrix between the prior model

parameters m? and the corresponding predicted data d?, ng € RV2 x RN¢ js the covariance
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of the predicted data d?, Cq4 € RV2 x RV¢ is the covariance matrix of the measurement error e,
m? and d? are the empirical mean of the ensemble of model variables and predicted data,
respectively. In the linear case, where the forward operator F can be expressed as matrix G,
the covariance matrices CP ; and Cf, are corresponding to C,,GT and GC,,G”, respectively,
where C,, is the covariance of model parameters. Equations 4.1 and 4.2 show that the Kalman
Gain matrix controls the trade-off between the prior predictions and updated correction driven
by measurements according to their uncertainties. The weights of measurements are large if
the measurement errors are small and vice versa. For nonlinear inverse problems, it is
necessary to iteratively update the model variables to achieve a satisfactory match between
prediction and measurements. One common strategy is to sequentially assimilate observations
at each time step (e.g., ensemble Kalman Filter), but this procedure requires to perform forward
simulations every time step and thus it is computationally inefficient. Alternatively, in ES, all
data available are simultaneously used for model updating. To guarantee the convergence
between the model predictions and measurements in nonlinear cases, the simultaneous data
assimilation is performed multiple times. This method is referred to as ES-MDA (Emerick and
Reynold, 2013).

ES-MDA is an iterative method. An ensemble of prior models is first sampled from a prior
distribution and iteratively updated until the models are consistent with the measured data.
Each data assimilation step can be interpreted as a Bayesian updating process, where the
models updated in the previous iteration are used as the prior at the current step and then

corrected by assimilating the observations. The algorithm of ES-MDA can be summarized as

follows:

i) Define the ensemble size N,, the number of data assimilations N and the inflation
coefficients {a; }x=1 .y With the constraint Yi_; a;* = 1.

i) Generate an ensemble of N, prior realizations {mj}j=1 y, of the EC and MS
models conditioned on the available borehole data using geostatistical simulation
algorithms.

i) Fork=1toN
¢ Compute the geophysical response of each prior realization {d}”} using

j=1,..,N,

the forward model described in section 2.2.2.

e Perturb the observations {di}j=1 .. for each ensemble member as
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dj = dobs + \/?l'c:l/zel', (45)
where €~N(0, Iy,).

e Update model ensemble {mj}j=1,...,Ne using Equations 4.1 to 4.4.

End

The solution of the inverse problem is a linear combination of the updated ensemble models.
The ensemble models, at each iteration, are updated according to the residuals between
predicted and observed data and the cross-covariance matrix of the residuals and model
variables. The initial ensemble must be large enough to represent the prior variability. If the
variability of the prior is too small, the uncertainty could be severely underestimated. The
number of iterations is established through a trial-and-error approach. Publications on data
assimilation in dynamic reservoir modelling show that a number of iterations between 4 and 8
is generally sufficient (Emerick and Reynolds, 2013). In geophysical inverse problems, the
large amount of data makes the problem less underdetermined than fluid flow modelling
problems, hence 4 iterations are generally sufficient (Grana et al., 2021). However, due to the
large number of measurements, a large ensemble is necessary to avoid uncertainty
underestimation or ensemble collapse. The prior model includes the prior distribution of the
model variables and the spatial correlation model of the realizations. For datasets with large
errors, the prior distribution has a strong impact on the posterior realizations, especially the
spatial correlation model. In these cases, alternative methods that predict jointly the model
parameters and the spatial correlation model can be used (Laloy et al., 2015; Hunziker et al.,
2017; Wang et al., 2022). The vertical correlation can be estimated from well log data, whereas
the lateral correlation must be assumed based on prior geological information. For simplicity,
the data errors are assumed to be spatially uncorrelated with diagonal covariance matrix;
however, if geophysical data are pre-processed for quality control and denoising, the error
model could be correlated, and the covariance matrix of the data is banded. The assumption
of the banded covariance matrix is generally challenging in practical applications. Large
variances of the errors tend to make the prior dominant on the data-driven likelihood function
and might lead to a poor data match, whereas small variances of the errors tend to make the

likelihood function predominant and might lead to unphysical values of the model variables.

4.2.3 Model re-parameterization

Due to the large dimension of the model grids in real applications, the ES-MDA method is often
computationally and memory prohibitive. Therefore, the method presented in this Chapter

proposes to reduce the model parameters using the RTD method and then perform the data
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assimilation in the reduced model space. After each data assimilation, the reduced model
parameters can be back transformed to the full model space using the factor matrices obtained
by RTD.

A tensor is a multi-index numerical array, which can be used to represent high-dimensional
data. Conventional multivariate data analysis approaches based on standard flat-view matrix
models requires reshaping the data tensor into a matrix or vector and applying classical matrix
factorization methods, such as singular value decomposition (SVD) non-negative matrix
factorization (NMF), or independent component analysis (ICA) (Cichocki et al., 2015). These
methods can be efficiently implemented but they might struggle to capture spatial correlations
in multiple dimensions, which limits their performance in high-dimensional data analysis.
Tensor decomposition methods are based on multilinear algebra and can exploit the intrinsic
multi-dimensional patterns in the model space, as the RTD used in this work. In recent years,
many deep-learning-based reduction methods have been proposed to overcome the limitation
in geoscience problems (e.g., Laloy et al., 2017; Laloy et al., 2018; Canchumuni et al., 2019;
Liu and Grana, 2020; Lopez-Alvis et al., 2021; Mo et al., 2019). However, those methods based
on deep neural networks usually require thousands of prior models for training and are

relatively difficult to integrate with ES-MDA.

The canonical polyadic (CP) decomposition and the Tucker decomposition are the two most
popular tensor decomposition algorithms (Rabanser et al., 2017). The CP decomposition
represents a tensor as a linear combination of vectors, whereas the Tucker decomposition
decomposes a tensor into a small dense core tensor and a set of factor matrices. In this work
is adopted the Tucker decomposition, because it is more suitable for dimensionality reduction
in which the core tensor can be regarded as the sparse features extracted from the original

tensor data and the factor matrices can be used for back-transformation.
The Tucker decomposition of an N order tensor X € Ri1*2*-XIN can be expressed as:

where the symbol x, represents the tensor-matrix multiplication along mode-n, G is the
nondiagonal core tensor that includes the information for the extension of the tensor

components, and {B®™} _  are factor matrices that represent the principal components in

the respective tensor modes.

A graphical view of the Tucker decomposition is presented in Figure 4.1. Tensor decomposition

is also non-unique. A decomposition where core tensor and all factor matrices are orthonormal
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is referred to the Higher-Order Singular Value Decomposition (HOSVD) (De Lathauwer et al.,
2000a; De Lathauwer et al., 2000b).

N3 X Ry

~ BY
X B, G
R, X N,
Ry X R, X Ry
Ny X Ny X Nj N, X R,

Figure 4.1 Tucker decomposition of a third-order tensor.

In practice, the 3D geological models might consist of millions of grid cells. Due to the limited
memory and high computational complexity, the conventional tensor decomposition methods
are usually not applicable. Randomized algorithms are then used for large-scale tensors. The
randomized approach aims to find the low-rank approximation of the unfolding matrices of
large-scale tensors via the probabilistic strategy (i.e., random sketching) and then perform
matrix factorization on the small matrices. One popular method is the random projection in
which a large-scale matrix is reduced using the transformation of a random matrix with given
probability distribution. The detailed steps of the randomized HOSVD of an N™ order tensor

data X € RitXlX-XIN gre summarized as follows:

i) Define the number of iterations N;; and a multilinear rank (R, R5, ..., Ry).
i) Initialize the factor matrices {B™ € R'» xR} as random Gaussian
matrices.
i) For i =11to Ng:
Forn=1to N:

© Z=X Xy {B™'}.

e Generate a random matrix Q™ e Rllp=nR» x RR» drawn from Gaussian

distribution.

e Compute W™ =2,,0M™ where Z,, € Ri» x Rll=n'» is the n-unfolding

matrix of tensor G.
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e Compute the orthonormal basis Q™ € R» x Rf» of W™ by QR

decomposition.

End

e Compute the core tensor G = Z x; Q7 x, Q@' . x, @M
End

Herein, is proposed the RTD algorithm as a dimensionality reduction method to reduce the
dimension of the model and update the variables in a low dimensional model space. This
approach allows improving the computational efficiency of the inversion. In this work, the
uncertainty in the RTD transformation and the uncertainty in the inversion are not
differentiated. The larger is the number of ensemble members, the smaller is the
underestimation of the uncertainty. Similarly, the larger is the reduction of the model space,
the larger is the overestimation of the uncertainty. By adopting a trial-and-error approach, can
be determined, case by case, the optimal dimension of the model space and of the model
ensemble. A detailed analysis of the uncertainty quantification in geophysical inverse problems

with model and data reduction is presented in (Grana et al., 2019).

The presented FDEM inversion method predicts a set of model realizations that represent the

posterior distribution of the inverse solution. Figure 4.2 illustrates the inversion workflow of ES-
MDA with RTD. It starts with a set of prior realizations of EC and MS {m]’-‘z"}IlVe simulated by
geostatistics algorithms. Then, their EM responses {d]’-‘}ll"e are predicted by the forward model
and the reduced model parameters {z}‘}’l"e are obtained by the RTD. The reduced model
parameters are then updated {z}‘“}’l"e by assimilating the observations with ES-MDA. It is an
iterative procedure in which the prior models in the next iteration {mj’-‘“}’lve are back

transformed from {z]f"'*l}]l\'e by the inverse RTD. In the FDEM inversion method presented in

this Chapter, both the ES-MDA and the model reduction with RTD affect the uncertainty
assessment of the posterior solution. The performance of the ES-MDA depends on the number
of models in the initial ensemble while the performance on the RTD depends on the
dimensionality of the lower-dimensional space. Other stochastic inversion methods with robust
uncertainty assessment, such as Markov chain Monte Carlo method (Blatter et al., 2018) could

also be adopted.
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Figure 4.2 Workflow of ES-MDA with RTD.

4.3 Synthetic case application

The inversion method presented in this Chapter was first applied to a vertical section of the 3D
synthetic data set presented in section 2.3.1 and based on real data collected at a mine tailing
in Portugal (Panasqueira). This dataset comprises laboratory measurements of porosity and
particle density obtained from samples collected from two main rock types of the site: fine-
shaly sands (which constitutes the predominant rock type), and quartz-schist gravels. The
models of the main physical properties (e.g., porosity, particle density) were first generated
using direct sequential simulation (Soares, 2001) based on a variogram model that represents
the expected spatial correlation of each property. The true EC model is then generated from
these main physical properties using Archie’s equation (Archie, 1942). The true MS model is
generated using geostatistical simulations (Soares, 2001) based on a variogram model that
describes the expected spatial distribution pattern of MS. From the resulting EC and MS
models (Figures 4.3a and 4.3b), four pseudo-boreholes were extracted equally spaced along
the vertical section. A detailed description of this synthetic data set can be found in section
2.3.1.

The prior ensembles of EC and MS include 500 geostatistical realizations generated using
direct sequential simulation (Soares, 2001). This set of models represents the model
parameter space and the histograms of both properties as retrieved from the borehole data.
Therefore, this geostatistical simulation algorithm does not assume any parametric distribution
for the property of interest. The EC and MS data extracted at the borehole locations are used
as conditioning data for the geostatistical simulation so that all model realization reproduce the
borehole data at the borehole locations. Based on the spatial continuity retrieved from the
borehole data, the prior ensemble of realizations is simulated by imposing omnidirectional
horizontal exponential variograms for EC and MS with a range of 6 m and 8 m, respectively.
The vertical direction is modelled with exponential variograms with a range of 4 m for EC and
6 for MS (Table 4.1).
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Figure 4.3 True and prior mean of EC and MS of the synthetic case: (a) true EC model; (b) true MS
model; (c) prior mean of EC; and (d) prior mean of MS. It is clear the influence of the borehole data
in the prior mean of EC and MS.

Table 4.1 Horizontal and vertical ranges and the nugget effects expressed as percentage of the total
variance of the data, for the variogram models used to simulate and co-simulate EC and MS.

Omnidirectional spherical variogram | EC models | MS models
Horizontal range 6m 8m
Vertical range 4 m 6m
Nugget effect 5% 5%

The true FDEM data were generated using the forward model (Hanssens et al., 2019)
described in section 2.2.2, and mimicking the coil configurations of a multi-receiver FDEM
sensor, namely a DUALEM-21S (DUALEM Inc., Milton, Canada). Therefore, was considered
a loop-loop system setup, characterized by one transmitter coil and multiple receiver coils with
two spatial configurations and two offsets per coil configuration, namely the horizontal coplanar
(HCP) configuration with 1 and 2 m offset, and the perpendicular (PRP) configuration with 1.1
and 2.2 m offset. The data are contaminated by Gaussian noise and the noise level is 10% of

the observations.

The model grid includes 400x40 cell in the i- and k- directions, respectively. The pointwise
mean models of the prior EC and MS ensembles (Figures 4.3c and 4.3d) reproduce the true
EC and MS measurements at the borehole locations. Far from the location of the boreholes,
and for distances larger than the variogram range, these models tend to the average value of
the distribution. For this 2D example, both EC and MS model are a third order tensor with a
size of 400x40x500 (corresponding to the numbers of model grids in the i- and k- directions,
and ensemble size, respectively). The tensors of EC and MS model are reduced to 40x5x500
by the RTD algorithm with four iterations before data assimilation. The ES-MDA is then applied

in the reduced model space. The number of iterations of the ES-MDA is 4 with the inflation
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coefficients of 9.33, 7.0, 4.0 and 2.0, which are recommended by Emerick and Reynolds
(2013). The posterior mean of EC and MS is shown in Figures 4.4a and 4.4b, and the posterior
standard deviation is shown in Figures 4.4c and 4.4d. The absolute residuals between the
predicted posterior mean and the true models are shown in Figures 4.4e and 4.4f. The results
capture small- and large-scale features of the true EC and MS models up to the depth of
investigation provided directly by the forward operator used in the inversion (Hanssens et al.,
2019) which is estimated to be approximately 3 m with the coil configurations used in this
application. The inversion, by construction, reproduces exactly the measurements at the
borehole locations. Hence, the posterior standard deviation is zero at the borehole location

and it increases with the distance from the borehole locations.

Posterior mean of EC «1072 Posterior mean of MS x10

Posterior std. of MS
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Figure 4.4 Posterior mean, standard deviation (std.) and residual of EC and MS of the synthetic case:
(a) posterior mean of EC models; (b) posterior mean of MS models; (c) posterior std. of EC; (d)
posterior std. of MS; (e) absolute error between the posterior mean and the true EC; (f) absolute error

between the posterior mean and the true MS.

Despite the large variability in the values of the QP and IP responses predicted from the prior
models for all coil offsets (Figures 4.5 and 4.6) the posterior model of QP and IP matches the
observed data for most of the observations. At some locations the predicted models show
mismatches with the observation. These results might be related simultaneously to the noise
component within the data and the uncertainty originated due to the dimensionality reduction
technique applied as part of the proposed method (i.e., RTD) (Grana et al., 2019; Liu et al.,
2022a).
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Figure 4.5 Predicted IP data from the prior and posterior EC and MS models of the synthetic case.
The red dots are the true measurements with noise; the black lines represent the true data without
noise; the intervals in grey and light blue correspond to the region between the percentiles P5 and
P95 of the prior and posterior prediction, respectively; the black and blue lines represent the prior

mean and posterior mean, respectively.
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Figure 4.6 Predicted QP data from the prior and posterior EC and MS models of the synthetic case.
The red dots are the true measurements with noise; the black lines represent the true data without
noise; the intervals in grey and light blue correspond to the region between the percentiles P5 and
P95 of the prior and posterior prediction, respectively; the black and blue lines represent the prior

mean and posterior mean, respectively.
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4.4 Real case application

The proposed ES-MDA with RTD to the FDEM inversion was applied to the same a real data
set from a FDEM survey described in section 2.4.1. This FDEM survey was acquired over
arable land with slight slope and 20 cm of rendzina soil cover, located near Knowlton (Dorset,
UK), and containing several archaeological features. The region of interest is characterized by
Cretaceous chalk in the shallow subsurface, and calcareous ooze, overlain by Quaternary
siliciclastic sand deposits. The Cretaceous formation is characterized by a background
susceptibility of zero and a low EC (~ 7 m/Sm), while the sand deposits is strongly magnetic
(MS =~ 1x1073) and slightly more conductive than the bedrock. In this area IP anomalies are
related to the buried archeology and the background geology provides a large range of QP
values (Delefortrie et al., 2018).

The FDEM data are collected using a DUALEM 21HS instrument, with an operating frequency
of 9000 Hz in a loop-loop setup, elevated at 0.16 m from the surface pulled by a quadbike. The
data acquisition was performed along parallel lines 1 m apart at a speed of ~8 km/h, and a
sampling frequency of 8 Hz. This application used the FDEM data collected from one
transmitter paired with two coplanar receiver coils, in horizontal mode, at 1 and 2 m from the
transmitter (HCP1 and HCP2, respectively), and two receivers in vertical model, 1.1 and 2.1
m from the transmitter (PRP1 and PRP2, respectively). The measured IP and QP data are
noisy and with systematic errors; therefore, a calibration was performed before the inversion
using the existing EC and MS borehole measurements, applying a drift correction consisting
of tie-line levelling as described in (Delefortrie et al., 2018). However, was not tackled the
striping effect present in the PRP IP signal and the point anomalies observed in HCP QP signal
(Delefortrie et al., 2018). These characteristics of the observed signal do affect the quality of

the inversion results and the match between predicted and observed data.

EC and MS data are collected in twelve boreholes at intervals of 5-10 cm, reaching a maximum
depth of 1.2 m and a minimum of 0.8 m. Eleven boreholes were used to compute horizontal
and vertical experimental variograms based on a spherical model (omnidirectional in the
horizontal direction) for both EC and MS properties, with horizontal range of 16.8 m for EC and
28.2 m for MS, and vertical range of 0.8 m for EC and 0.7 m for MS.

The model grid includes 531x171x20 cells in the i-, j- and k- directions. A set of 500
geostatistical realizations of EC and MS is then generated conditioned on the borehole data
and assuming variogram models fitted to experimental variograms computed from the

borehole data. The mean prior models of EC and MS (Figures 4.7a and 4.7b) match the
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borehole measurements and tend to the mean of the direct measurements away from the

borehole.
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Figure 4.7 Prior mean of EC (a) and MS (b) models of the real case. The black dashed lines represent

the locations of the X-, Y- and depth slices, and the black dots represent the well locations.

For this 3D case, both EC and MS model is a fourth order tensor with a size of
531x171x20x500 (corresponding to the numbers of model grids in the i-, j- and k- directions,
and ensemble size, respectively). The tensors of EC and MS model are reduced to
20x40x5x500 by the RTD algorithm with four iterations before data assimilation. Then was
applied the ES-MDA inversion with 4 iterations and inflation coefficients of 9.33, 7.0, 4.0 and
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2.0 (Emerick and Reynolds, 2013). The posterior mean models (Figures 4.8a and 4.8b) show
a detailed spatial distribution pattern with a layer of continuous high conductivity and
susceptibility at around 1 m depth. This value is consistent with the observed depth of the top
chalk as interpreted from the existing borehole data (Delefortrie et al., 2018). The posterior
standard deviation of EC and MS is shown in Figure 4.9. As the prior ensemble of EC and MS
was constructed with geostatistical simulation, the predicted EC and MS values at the borehole

locations are exactly reproduced.
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Figure 4.8 Posterior mean of EC (a) and MS (b) models of the real case. The black dashed lines

represent the locations of the X-, Y- and depth slices.
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Figure 4.9 Posterior standard deviation of EC (a) and MS (b) models of the real case. The black

dashed lines represent the locations of the X-, Y- and depth slices.

In Figures 4.10 and 4.11, is shown the comparison between predicted and measured IP and
QP data. The predicted data match relatively well the observed data. The mismatch between
the predicted and observed data might be due to the noisy nature of the data, as described
above, and the one-dimensional approximations of the forward operator that cannot model
complex and highly heterogenous lateral distributions of electrical properties. The
parametrization of the RTD and the ES-MDA might be partly attributed to the misfit between
predicted and observed data.
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Figure 4.10 Predicted IP data from the prior and posterior EC and MS models of the real case. The
red dots are the true measurements; the intervals in grey and light blue correspond to the region
between the percentiles P5 and P95 of the prior and posterior prediction, respectively; the black and

blue lines represent the prior mean and posterior mean, respectively.
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Figure 4.11 Predicted QP data from the prior and posterior EC and MS models of the real case. The
red dots are the true measurements; the intervals in gray and light blue correspond to the region
between the percentiles P5 and P95 of the prior and posterior prediction, respectively; the black and

blue lines represent the prior mean and posterior mean, respectively.

The computational cost of one updating step for ES-MDA is O(N,*N,, + N.*N,) where N,, Ny,
and N, are the ensemble size, the number of model parameters and observations, respectively
(Nino Ruiz et al., 2015). In the real case, the ensemble size is 500; the number of observations
is 26,640; the numbers of model parameters with and without reduction are 1,816,020
(171x531x20) and 4,000 (20x40x5), respectively. The speed-up ratio with model dimension
reduction by RTD is roughly 60.14.
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45 Discussion

This Chapter proposes a stochastic FDEM inversion method in a reduced space leveraging
the benefits of RTD with respect to dimensionality reduction. The method is illustrated in two
application examples: one synthetic and one real. First, we considered a 2D synthetic data set
to evaluate the accuracy of the predictions. Then, the proposed method was applied in a real
3D data set to assess its performance under real noise conditions. In both application
examples the data predictions do match the observed FDEM data (Figures 4.5, 4.6, 4.10 and
4.11). Besides, when observing the residuals between model predictions of EC and MS and
the true model (Figure 4.4e and 4.4f) they do not exhibit any spatial continuity pattern that is
consistent with the true EC and MS spatial continuity pattern. In both application examples the
prior ensembles of EC and MS are constructed via geostatistical simulation. While alternative
methods can be applied, this class of methods have the ability to reproduce direct observations
(i.e., borehole data, histograms and spatial continuity patterns as revealed by variogram
models). For this reason, when relying on geostatistical simulation to build the prior ensemble,
a critical aspect for the success of the proposed inversion method is the availability of borehole
data and its spatial distribution within the area of interest. Spatial sampling, including the spatial
distributions of conditioning data, has been extensively studied in mining engineering (Journel
and Huijbregts, 1978). A limited number of boreholes might affect the accuracy of the inversion
and lead to large uncertainties in the predictions. In real applications, the prior distributions
and variogram models assumed in the generation of the prior ensembles should account for
prior geological information available for the area under investigation as well as direct

measurements from nearby areas.

Figures 4.5, 4.6, 4.10 and 4.11 show that the P5-P95 interval of the predicted data do not
encapsulates entirely the observed data. In other words, there is an underestimation of the
predicted uncertainty. This fact might be originated by two complementary reasons: the
reparameterization of the model parameter space with the RTD affects the uncertainty
assessment (Grana et al., 2019 and Liu et al., 2022b); the ES-MDA has a better performance
for non-Gaussian and non-linear inverse problems. Finally, to assess the performance of the
inversion locally, one borehole from the conditioning data set was removed in the real case
application. Removing a larger number of conditioning boreholes would decrease the accuracy
of the predictions as the estimation of the EC and MS distributions would be poor. The
comparison between the predicted properties and the borehole measurements at the location
of the borehole not used to constrain the inversion is shown in Figure 4.12. Despite the limited
length of the measured EC and MS, the estimated posterior distribution matches the true EC
and MS. Due to the relatively small number of samples the predictions in the deeper part of

the model are less reliable.
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Figure 4.12 Comparison of the predicted and measured EC (a) and MS (b) at the blind well of the
real case. The red dots are the true measurements; the intervals in grey and light blue correspond to
the region between the percentiles P5 and P95 of the prior and posterior realizations, respectively;
the blue lines represent the posterior mean.

The ES-MDA was used due to its relatively simplicity of implementation and its potential to
efficiently assess the posterior distribution in geophysical inversion problems. However, the
computational cost of ES-MDA might be prohibitive for large-dimensional inverse problems
such as FDEM inversion. For this reason, was combined RTD, a dimensionality reduction
technique of the model parameter space, with ES-MDA. The application examples shown
herein, show that the coupling of both methodologies is an efficient solution to alleviate the
computational burden of ES-MDA without compromising the model predictions and the
uncertainty assessment despite assumptions about the prior distributions of the model
parameters.

4.6 Conclusion

In this Chapter is proposed a FDEM inversion method that combines ES-MDA with RTD to
predict the spatial distribution of EC and MS. The initial prior ensemble of models is generated
using geostatistical simulation, to model the complex and heterogeneous subsurface
distributions. Then, RTD coupled with ES-MDA makes the inversion method computationally
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feasible and applicable to 3-dimensional grids with a large number of cells. This FDEM
inversion method was validated on a two-dimensional synthetic data set and then applied to a
3-dimensional real data set. In both application examples, the predicted models reproduce the
measured EC and MS data while allowing assessing the uncertainty of the predictions. The
proposed inversion relies on a one-dimensional forward approximation but could be extended

to more complex physical models.

4.6.1 Conclusion data and materials availability

The code and synthetic data are freely available on GitHub
(https://github.com/theanswer003/ES-RTD-FDEM)
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Geostatistical joint inversion of

FDEM and DC resistivity data
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Narciso, J.*, Van De Vijver, E., and L. Azevedo, (under review), Geostatistical joint inversion
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Chapter 5

Due to their sensitive to subsurface electrical conductivity (EC), direct-current
resistivity and electromagnetic geophysical methods, particularly electrical
resistivity tomography (ERT) and frequency-domain electromagnetic (FDEM)
methods, have been widely applied in different near-surface activities, such as
agriculture, urban development, or investigation of mineral and groundwater
resources. Predicting the spatial distribution of EC from FDEM and ERT data
requires solving a geophysical inversion problem. Due to the different spatial
resolutions of both methods, and the nonlinearity of the inverse problem, individual
inversions of each type of the geophysical data have been the standard to predict
EC. However, the joint inversion of FDEM and ERT data has the potential to reduce
the non-uniqueness of the inversion solution and to increase the ability to model
the small-scale spatial heterogeneity which is characteristic of near-surface
environments. We propose herein an iterative geostatistical joint inversion method
of FDEM and ERT data. A geostatistical framework is used to couple both data
domains in a consistent spatial model. The misfit between predicted and observed
data simultaneously for both domains drives the convergence of the iterative
procedure. The method is validated in a synthetic data set that illustrates a complex
and highly heterogeneous near-surface environment. The proposed joint inversion
method is also applied in a real case, characterized by high conductivity field data.
The joint inversion results present improvements over the FDEM inversion results
in both synthetic and real case applications, specifically in the modelling of the
small-scale variability and the reduction of the spatial uncertainty at depth. In both
application examples, the models predicted at the last iteration agree with the

expected spatial distribution of the true EC field.

5.1 Introduction

The near-surface is a heterogeneous and highly dynamic region of the subsurface, particularly
in urban environments, as the result of complex, interacting processes of both natural and
anthropogenic origin (e.g., Lehmann and Stahr, 2007; Morel and Heinrich, 2008). Due to these
reasons, an accurate characterization of the spatial distribution of the near-surface geological
properties is often challenging, yet essential for different activities (e.g., groundwater
contamination, geotechnical engineering, mineral resources prospecting, soil assessment,
archaeological detection). The characterization of these systems based exclusively on discrete
direct observations acquired through conventional invasive sampling techniques, such as
drilling and core sampling, can capture the vertical spatial variability of these heterogeneous

deposits at sparse location in space. These techniques are expensive, impractical to perform
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in some sites and reveal limitations in capturing the lateral spatial variability of near-surface
properties. Non-invasive geophysical surveys, particularly electrical and electromagnetic
methods, have been proven powerful tools for the collection of virtually spatially continuous
high-resolution datasets that can be translated in detailed images of the near-surface physical
properties (Moorkamp, 2017). Within this context, frequency-domain electromagnetic (FDEM)
induction and electrical resistivity tomography (ERT) methods have demonstrated their
efficiency to characterize heterogeneous subsurface systems. Both methods are sensitive to
electrical conductivity (EC), while frequency-domain electromagnetic data can additionally be
linked to the subsurface magnetic susceptibility (MS) and dielectric permittivity (Everett, 2013).
EC is directly related to porosity, water saturation and the conductivity of pore fluids, while MS
is a function of the metal content in the subsurface.

The data acquired from both geophysical methods can be translated into numerical subsurface
models of the physical subsurface properties of interest by solving a geophysical inversion
problem. These geophysical inverse problems are ill-posed nonlinear problems and have a
nonunigue solution due to the larger number of model parameters when compared against the
observed data. This is because geophysical measurements are band-limited and
contaminated by noise and inconsistencies during the collection of the data set, resulting in
uncertainties in the inverse models (Tarantola, 2005).

A joint inversion of multiple geophysical methods, sensitive to a common subsurface property,
or properties, can potentially improve the predicted subsurface models, while reducing the
uncertainty of the predictions (Moorkamp, 2017). The joint inversion leverages the benefits of
each method individually resulting in better predictions about the geometry and spatial
distribution of the subsurface properties when compared to using just a single method, hence
mitigating the non-uniqueness of the inverse problem (Bobe et al, 2020). Although FDEM and
ERT data are sensitive to the same subsurface physical property, both methods are often
interpreted and modelled separately. Nevertheless, inverting both data sets in a joint inversion
framework is generally a preferable approach due to the complementary information about the
subsurface provided by each method due to differences in the spatial resolution. Regarding
the complementary information from FDEM and ERT data sets, while FDEM inversion can
detect thin conductive layers and fails to model thin resistive layers in conductive
environments, ERT inversion have the opposite characteristics (Sharma and Kaikkonen,
2003). However, handling the differences in the resolution and nature of both methods is not

straightforward.

A few approaches for joint inversion of direct current (DC) electrical resistivity and

electromagnetic induction (EMI) data have been presented (e.g., Raiche et al., 1985; Sharma
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and Kaikkonen, 2003; Yi and Sasaki, 2015). These methods apply deterministic gradient-
based geophysical inversion approaches, which are not capable to assess uncertainty of the
predicted subsurface model. Also, these methods are based on the use of arbitrary weights in
the objective function to balance the importance, and assimilation of each data set, during the

inversion procedure.

Probabilistic inversion approaches can quantify the uncertainty related to the prediction
obtained from solving a geophysical inverse problem. The common approach in geophysical
inversion is the use of Markov chain Monte Carlo (MCMC) (Tarantola, 2005). However, in joint
inversion application with highly parametrized models, the forward model is computationally
expensive, which can limit the applicability of the MCMC methods and their convergence within
a reasonable number of forward model runs (Sambridge and Mosegaard, 2002). Rosas-
Carbajal et al. (2013) jointly invert DC resistivity and EMI data using a joint inversion method
based on MCMC and the plane waves approximation. Their results show a reduction of the
uncertainty in the predicted models by comparison to the separate MCMC inversion of these
geophysical data. Bobe et al. (2020) introduce a joint inversion of DC resistivity and small-loop
EMI data based on the Kalman ensemble generator (KEG) as alternative to a MCMC inversion
framework. While this KEG method is computational less expensive then MCMC it assumes
Gaussian distribution for the probability distribution of the model parameters and the errors
present in the observed data.

In this work, we present an iterative geostatistical joint inversion technique of FDEM and ERT
data for EC, based on a previously established iterative geostatistical FDEM inversion
technique (Narciso et al., 2022) (Chapter 2). A geostatistical framework is used to couple both
data domains in a consistent spatial model while assessing the uncertainty of the predicted
models. For each geophysical data, a dedicated forward model is used to compute synthetic
data. The misfit between predicted and observed data for each domain drives the convergence
of the iterative procedure, conditioning the co-simulation of new EC models in the subsequent
iterations. The method is validated in a synthetic data set that illustrates a complex and highly
heterogeneous near-surface environment, developed from direct and laboratory
measurements on geological samples collected at a mine tailing disposal site in Portugal
(Panasqueira). The proposed iterative geostatistical joint inversion method is also applied in a
real case study, characterized by high conductivity field data. The results obtained are
discussed against the individual inversion of the FDEM data, and present improvements in
both synthetic and real case applications, specifically in the modelling of the small-scale
variability and the reduction of the spatial uncertainty at depth. In both applications, the models

at the last iteration that predict FDEM and ERT data match better the observed data of each
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geophysical method and reproduces better the true electrical conductivities, than the models

obtain from the FDEM inversion.

5.2 Methodology

The proposed iterative geostatistical joint inversion method predicts the spatial distribution of
EC from FDEM and ERT data and also predicts the spatial distribution of MS from FDEM data.
The relationship between the model parameters (m) (i.e., EC and MS) and both geophysical

data (d,ps), contaminated by noise (€), can be mathematically summarized by
m = F~1(dgps + €). (5.1)

We approximate the inverse problem stated in Eq. 5.1 with an iterative geostatistical
geophysical inversion method based on global approach (Azevedo and Soares, 2017, Narciso
et al., 2020). It relies on two key main ideas: i) the perturbation of the model parameter space
and update technique with stochastic sequential simulation and co-simulation (Soares, 2001);
and ii) the convergence is ensured by a global stochastic optimizer driven simultaneously by
the misfit between true and synthetic FDEM and ERT data. The proposed iterative
geostatistical joint inversion methodology may be summarized in the following sequence of
steps (Figure 5.1) and divided in four main steps, which are described in detail below.

5.2.1 EC and MS model generation

The proposed iterative geostatistical joint inversion methodology starts with the generation of
sets of Ns models of EC and MS with stochastic sequential simulation and co-simulation
(Deutsch and Journel, 1998). Each model is simulated, or co-simulated, for the entire inversion
grid at once. Available direct measurements of EC and MS from borehole data are used as
conditioning experimental data. The spatial continuity pattern of the simulated models is
imposed through a variogram model, fitted to experimental variograms computed from the
available direct measurements, or borrowed from a prior geological knowledge. In the
proposed joint inversion methodology, we use direct sequential simulation (Soares, 2001) and
co-simulation with joint probability distributions (Horta and Soares, 2010) as model
perturbation technigue. Unlike sequential Gaussian simulation (SGS) (Deutsch and Journel,
1998), these stochastic sequential simulation techniques do not impose any condition on the
data distribution (i.e., Gaussian) of the properties to be simulated, thereby avoiding the
intermediate step of a data transformation of the distribution of the properties to be simulated.
Rather, the marginal and joint distribution as inferred from the experimental data are used in

the simulation procedure. The use of non-Gaussian stochastic sequential co-simulation
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techniques allow a better reproduction of the relationship between variables as retrieved from
the available direct measurements, especially for complex and highly nonlinear relationships
between primary geophysical and secondary petrophysical properties related to the
geophysical measurements used in the inversion procedure, electromagnetic induction and

direct-current resistivity measurements.
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Figure 5.1 Schematic representation of the iterative geostatistical joint inversion method using FDEM
and ERT data.

As we rely on stochastic sequential simulation and co-simulation, all the subsurface models
generated during the iterative procedure, reproduce exactly the values of the borehole data at
their locations, the global marginal and joint distribution of EC and MS, and the imposed spatial
continuity pattern (i.e., the variogram models for each property individually).

5.2.2 FDEM forward model and sensitivity analysis

The forward model F maps the model (m) into the data (d,,s) domain. Thus, a forward model
iS necessary to calculate the theoretical FDEM instrument response, existing in two
components — the in-phase (IP) and quadrature-phase (QP) — for a given subsurface
distribution of EC and MS. The FDEM forward model can be formulated in 1D, 2D or 3D (e.g.,
Auken and Christiansen, 2004, Cox and Zhdanov, 2008, Farquharson et al., 2003), to
simultaneously address EC, both EC and MS or even EC, MS and dielectric permittivity.

The proposed geostatistical joint inversion method uses a forward model that calculates the
theoretical 1D normalized EM response, expressed in IP and QP components, of a small loop-
loop system, that is characterized by one transmitter coil and one or multiple receiver coils
(Hanssens et al., 2019). This forward model considers a FDEM system positioned at the
surface of an n-layered subsurface model, that accounts for EC, MS and dielectric permittivity.

This forward model uses Hankel functions, numerically calculated by means of a Guptasarma
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and Singh digital filter (Guptasarma and Singh, 1997), to determine a superposition of Bessel

functions of the zeroth and/or first order that model the EM responses.

The sensitivity modelling represents how sensitive the forward model is toward changes of a
physical property m (i.e., EC) at a specific layer n of the layered half-space. The sensitivity
modelling calculates, with the corresponding forward response, the vertical sensitivity
distribution related to each physical property within the considered layered model.

After this step, we obtain a set of Ns responses of IP and QP per coil configuration, and the
corresponding vertical sensitivity profiles. A detailed description of the FDEM forward model is

shown in Section 2.2.2.

5.2.3 ERT forward model

The forward model used in the proposed iterative geostatistical joint inversion method to
compute Ns synthetic apparent resistivity models from the previously generated electrical
conductivity geostatistical realizations is a two and a half-dimensional forward model
(Pidlisecky and Knight, 2008).

In ERT surveys, a series of known currents are injected in the ground using two current
electrodes, then a series of voltage measurements are obtained in two other electrodes.
Poisson’s equation (Eq. 5.2) can be used to describe the electric potential field generated when

a current passes across an electrode dipole:
—V - (oVe,) =1(6(r =)= 6(r— 17)), (5.2

where ¢ is the electrical conductivity [M'L®T??], ¢, is the potential field [ML?T=I"], I is the
input current [I], § is the Dirac delta function, and r* and r~ are the locations of the positive
and negative current electrodes, respectively. To solve numerically Eq. (5.2) for the electric

potential, ¢,, numerical gradient, and divergence approximations are required. Once

numerical finite difference operators have been derived for gradient and divergence, Eqg. 5.2

can be written in matrix notation as:

(DS(0)G)$ = A(0) =g, (5.3)

where D is the divergence matrix, S(o) is a diagonal matrix containing the electrical
conductivity values, G is the gradient matrix, ¢ is a vector of electric potentials, A(o) is the
combined forward operator, and q is a vector containing the current electrode pairs (Pidlisecky
and Knight, 2008). Equation (5.3) is solved to yield the potential field:

¢ =A"(0)q. (5.4)
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A vector of electric potential values for the cells in the model is the result of Eq. (5.4). Potential
differences can be calculated across each measurement pair, from the known locations of the
survey potential electrodes. To calculate apparent resistivities (pqy,), these measurements are
divided by the input current I and then multiplied by a specific geometric factor K for each
survey configuration:

r
Papp = T¢K' (5.5)

The geometric factor (K) depends on the arrangement of the four electrodes and
corresponding acquisition geometry (i.e., depends on the distance between each electrode
and the measurement). Is there is no topography, the conventional formula of K can be used

to calculate the apparent resistivity (Loke, 2018):

K = 1 1 2n 1 f 1 ’ (56)

}
Tc1-P1 TCi1-P2 TC2-P1 TC2-P2

where r¢,_p; IS the distance between current electrode C1 and potential electrode P1, r¢1_p,
is the distance between current electrode C1 and potential electrode P2, r.,_p; is the distance
between current electrode C2 and potential electrode P1, and r,_p, is the distance between

current electrode C2 and potential electrode P2.

5.2.4 Comparison and stochastic model optimization

The model optimization is achieved by the maximization of an objective function that measures
the similarity coefficient between synthetic and observed FDEM and ERT data (Eq. 5.7 and
5.10, respectively). For the FDEM data, that is based on the GEMI method (Chapter 2). The
similarity coefficient (S) is calculated per coil configuration, t..;s (i.€., the distance between
transmitter and receivers and the orientation of the coils), between the Ns synthetic IP and QP
responses obtained for each pair of EC and MS models and the corresponding observed IP
and QP data:

2.3 (x$ ")

Sit= —
T () +3 (1Y)

, j=1,...,Ns and t=1, ..., tis: (5.7)

where x and y are the real and synthetic QP (or IP) data with N samples. The negative values
of S are truncated at zero. This metric avoids an objective function with two terms, and the
need of user-defined parameters to weight each term. S is not computed for the entire series
of data but along a set of non-overlapping windows, which are randomly created at the
beginning of each iteration with different sizes and positions. Each S computed for each grid

location is then weighted in depth by the normalized sensitivity curves of each coil configuration
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resulting from the FDEM forward model (Eq. 5.8 and 5.9). In the synthetic and real case
applications of the joint inversion method proposed, assumption have been made that EC is

directly dependent on QP and MS on IP (alternative assumption might be considered)
Spct = senspc(z)M * ST, j=1,..,Ns and t=1,...,teis (5.8)
Sus"t = sensys(2)t * St j=1,..,Ns and t=1,...,teis (5.9)

where sensg. and sens,,s are the sensitivity analysis of each FDEM data at each location within
the inversion grid. A more detailed description of the model optimization using FDEM data can
be found in Section 2.2.3.

For the ERT data, the similarity coefficient (Szrr) is calculated between the Ns apparent
resistivity computed from each EC model using the forward model described in Section 5.2.3,
and the observed ERT data, using a non-overlapping moving window that visits all the

inversion grid locations:

Z*Zyzl(xs*yg)
3 )2+ 2 (v])

Shpr = j=1,..,Ns, (5.10)
where x and y are the observed and synthetic apparent resistivity, respectively. The width and
height of the moving window is randomly generated at the beginning of each iteration to avoid
biasing the results from iteration to iteration. Sgrr is bounded between -1 and 1, but negative

values are truncated at zero.

The selection of the maximum similarity coefficient in both data domains is performed after
computing a linear interpolation between Sz and all the S, for each coil configurations used,
at each location within the inversion grid. The samples of EC, corresponding to a given EC
geostatistical realization, that originated the maximum similarity coefficient interpolated
between the two methods, are stored together with the maximum similarity coefficient in two
auxiliary arrays. These arrays are used as conditioning information in the subsequent iteration.

The samples of MS corresponding to a given MS geostatistical realization that originated the

highest SMS]"t are also stored in an auxiliary volume.

The auxiliary volumes of EC and MS, and the corresponding similarity coefficients volumes,
are used as secondary variable for the stochastic sequential co-simulation of a new set of EC
and MS models in the subsequent iteration. The magnitude of the maximum similarity
coefficient determines the variability of the new ensemble of EC and MS models. The higher
the maximum similarity coefficient is, the less variable the new ensembles at each location

within the inversion grid will be. For locations associated with S~1 the new ensemble of co-
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simulated models of EC (and MS) will be similar to the ones corresponding to the auxiliary

volumes. This model update approach ensures the convergence of the geostatistical FDEM

data inversion from iteration to iteration. The proposed iterative geostatistical joint inversion

method for FDEM and ERT data may be summarized in the following sequence of steps
(Figure 5.1):

)

ii)

Vi)

vii)

viii)

98

Simulation of two ensembles of Ns models of EC and MS given borehole data and a
calibrated variogram model computed from these borehole data, with stochastic
sequential simulation (Soares, 2001) and co-simulation with joint probability
distributions (Horta and Soares, 2010);

Calculation of the Ns synthetic FDEM data for each pair of models simulated in i) using
a FDEM forward model. In the application examples shown below we use the 1D

approximation proposed by Hanssens et al. (2019);

Calculation of the Ns synthetic ERT data for each EC model simulated in i) using a ERT
forward model. In the application examples shown below we use the 2D approximation
proposed by Pidlisecky and Knight (2008);

Compute the local Sgc and Sys between true and synthetic FDEM data weighted in
depth by the normalized sensitivity curves of each coil configuration resulting from the
FDEM forward model;

Compute the local Sgrr between true and synthetic ERT data;

Compute the maximum similarity coefficient for EC by interpolating Sgrr and Sgc at

each location within the inversion grid;

Build four auxiliary volumes by selecting the EC and MS traces (i.e., vertical column of
grid cells) that ensure the highest S from each property at a given iteration. Store the

corresponding S values;

Generate a new ensemble of EC and MS models using co-DSS and the auxiliary
volumes resulting from vii) as secondary variables. All models of EC and MS generated
during the iterative geostatistical joint inversion are conditioned locally by existing
borehole data for EC and MS. They reproduce the global marginal and joint
distributions between EC and MC as inferred from the borehole data and a pre-defined

spatial continuity pattern as imposed by a variogram model;

Iterate and repeat steps ii-viii, while the global convergence of the method reaches a

pre-defined threshold of maximum similarity.
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The proposed iterative geostatistical joint inversion method of FDEM and ERT data is flexible
and can be parameterized for all possible coil configurations that are considered in the FDEM
survey and/or the configurations possible in a ERT survey. Alternative forward models can be

parametrized.

5.3 Synthetic case application

5.3.1 Data set description

A realistic 3D synthetic data set (Narciso et al., 2022) was used as benchmark for the proposed
iterative geostatistical joint inversion methodology. The data set was modelled based on
geological samples collected at a mine tailing disposal site in Portugal (Panasqueira) and
laboratory measurements of porosity and particle density. From these physical properties and
using stochastic sequential simulation (Deutsch & Journel, 1998), we generated a three-
dimensional synthetic porosity subsurface model, with a dimension of 150 by 200 by 4 meters
with a cell size of 0.5 m by 0.5 m by 0.1 m. Water content was then generated with stochastic
sequential co-simulation (Deutsch & Journel, 1998) conditioned to the porosity model. EC and
MS models were then derived from these 3D physical property models and the Archie equation
(Archie, 1942). From the EC and the MS models, nine locations were selected to represent
synthetic boreholes, that were used to condition the inversion procedure and to model the

spatial structure imposed via the variogram model.

The corresponding observed FDEM data were obtained using a 1D forward model (Hanssens
et al., 2019) and replicating a commonly used sensor for this type of near-surface surveys.
More particularly, data from a DUALEM-421S sensor were mimicked, including two loop-loop
coil orientations, a horizontal coplanar (HCP) and a perpendicular one (PRP), and 3 offsets

per coil orientation, 1, 2 and 4 meters for HCP and 1.1, 2.1 and 4.1 meters for PRP.

The observed apparent resistivity data along the transect randomly selected and used as true
ERT data during the application of the joint inversion method, was calculated considering a
Wenner-Schlumberger acquisition array (e.g., Loke 2018) composed by 412 electrodes
spaced 0.5 m and solving the 2.5D forward model to yield the potential field, following
Pidlisecky and Knight (2008). The same forward models used to calculate the observed FDEM
and the true apparent resistivity field was used as part of the inversion. Therefore, in this
application example we assume that no uncertainty is considered in the forward model, which

might be a strong assumption in real case applications.
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5.3.2 Results

The results obtained with the proposed iterative geostatistical joint inversion method for FDEM
and ERT data are illustrated for the 2D transect of EC and MS that intersects nine boreholes
(Figure 5.2).
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Figure 5.2 True electrical conductivity (left) and magnetic susceptibility (right) and location of the 9
boreholes providing conditioning data of the iterative geostatistical joint inversion method.

The convergence of the iterative geostatistical joint inversion method with respect to the
reproduction of the model parameters is assessed by calculating the pointwise mean models
of EC and MS computed from all the realizations generated at the last iteration, which is
equivalent to the maximum a posteriori model from a Bayesian geophysical inversion (Bobe,
2020). Although the reproduction of the true small-scale heterogeneities cannot be evaluated
by these models due to the smoothing effect of the e-type mode, the predicted and true EC
and MS models show similar large-scale spatial patterns and are sensitive to the high and low
values of true EC and MS (Figures 5.3b and 5.4b).

The small-scale differences between the true and predicted EC and MS models and the
relationship with depth and sensitivity loss of the predicted solutions are also observed by
calculating the pointwise variance models from the ensemble of EC an MS models generated
at each iteration (Figures 5.3c, 5.3d, 5.4c, 5.4d). As expected, in the first iteration the spatial
distribution of the variance for both properties is only dependent on the distance to the locations
of the borehole data. The pointwise variance models of EC and MS computed from models
predicted during the last iteration of the geostatistical joint inversion, shows the influence of
each geophysical data and the sensitivity provided by the FDEM forward model (Figures 5.3d,
5.4d). With the observed FDEM and ERT data assimilated in the models at the last iteration,
the spatial distribution of the pointwise variance model of EC shows lower variance values
along all the grid model and an influence of the sensitivity provided by the FDEM forward model
together with the configuration of the ERT survey (Figure 5.3d). The predictions about MS are
less sensitive at depth, with the lack of ERT data constraint in the MS predicted models, along
with the shallow sensitivity provided by the FDEM forward model (higher dependence on the

coil configurations used). This is demonstrated in spatial pattern of the pointwise variance MS
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model as the higher variance values are mainly located in the deeper part of the model (Figure
5.4d).
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Figure 5.3 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean
of all the EC models computed in the last iteration; c) pointwise variance of all the EC models
computed in the first iteration; d) Pointwise variance of all the EC models computed in the first
iteration. Vertical dot and blue lines indicate the location of the borehole data.
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Figure 5.4 a) Pointwise mean of all the MS models computed in the first iteration; b) pointwise mean
of all the MS models computed in the last iteration; ¢) pointwise variance of all the MS models
computed in the first iteration; d) Pointwise variance of all the MS models computed in the last

iteration. Vertical dot and blue lines indicate the location of the borehole data.

The proposed iterative geostatistical joint inversion method reproduces the true EC models
and converge to the true solution from the first iteration (Figure 5.5a) to the last iteration (Figure
5.5b), with the residuals between the true EC model and one EC realization reducing along
the iterations (Figures 5.5¢ and 5.5d).
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Figure 5.5 a) Histograms of the true EC and the pointwise mean of all the EC models computed in
the first iteration; b) Histograms of the true EC and the pointwise mean of all the EC models computed
in the last iteration; c) Histograms of the true EC and the residuals of the pointwise mean of all the
EC models computed in the first iteration; d) Histograms of the true EC and the residuals of the

pointwise mean of all the EC models computed in the last iteration.

The misfit between observed and predicted FDEM data, for both IP and QP components is
shown in Figures 5.6 to 5.9. For all coil configurations considered, the match between observed
and predicted IP and QP responses increases from the first to the last iteration. The uncertainty
envelope, as represented by the synthetic response of the ensemble of models in each
iteration, narrows and encloses the observed IP and QP data as the iterative procedure
advances. Although the uncertainty envelope of all coil configurations in the last iteration well
encloses the true FDEM data, a better match is reached in QP responses and in smaller coll
distances. This is due to a more stable signal in QP responses and a higher sensitivity to small-
scale heterogeneities at shallow depths when the coils are closest to each other, but also to

the influence of ERT data in a faster convergence of the EC inversion to the true solution. EC
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is directly dependent on QP and MS on IP is shown here.
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Figure 5.6 Comparison between observed (red line) and predicted QP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP
orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM
values predicted at a given iteration. In the left column the predictions at the end of the first iteration
are represented and in the right column the predictions at the end of the last iteration are represented.

Vertical lines indicate the location of the borehole data.
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Figure 5.7 Comparison between observed (red line) and predicted QP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for perpendicular coil configurations

(PRP orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and
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maximum FDEM values predicted at a given iteration. In the left column the predictions at the end of
the first iteration are represented and in the right column the predictions at the end of the last iteration
are represented. Vertical lines indicate the location of the borehole data.

As expected, the predicted QP and IP responses at the borehole locations are exactly

reproduced as the predicted EC and MS models are locally conditioned by the borehole data.
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Figure 5.8 Comparison between observed (red line) and predicted IP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP
orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM
values predicted at a given iteration. In the left column the predictions at the end of the first iteration
are represented and in the right column the predictions at the end of the last iteration are represented.

Vertical lines indicate the location of the borehole data.
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Figure 5.9 Comparison between observed (red line) and predicted IP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC and MS
models generated at a given iteration (dashed dark blue line) for perpendicular coil configurations
(PRP orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and
maximum FDEM values predicted at a given iteration. In the left column the predictions at the end of
the first iteration are represented and in the right column the predictions at the end of the last iteration
are represented. Vertical lines indicate the location of the borehole data.

The misfit between observed and predicted ERT data can be assessed in Figures 5.10. The
figures show how the match between observed and predicted apparent resistivity increases
from the first to the last iteration. The predicted and observed apparent resistivity show similar
large-scale spatial patterns and match the high and low values (Figures 5.10a and 5.10c).
However, it is observed an increase in small-scale differences between the true and predicted
apparent resistivity, particularly below the 3 m depth, arising from sensitivity loss of ERT data
at depth.

The reproduction of the observed apparent resistivity from the first to the last iteration of the
proposed iterative geostatistical joint inversion method can also be assessed by the residuals
computed between the observed data and the predicted data from a single geostatistical

realization generated during the last iteration (Figures 5.10d and 5.10e).
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Figure 5.10 Comparison between observed and predicted apparent resistivity data; a) Observed
apparent resistivity data; b) Predicted apparent resistivity data computed in the first iteration; c)
Predicted apparent resistivity data computed in the last iteration: d) Histograms of the observed
apparent resistivity data, one predicted apparent resistivity data computed in the first iteration and
the corresponding residuals between both; e) Histograms of the observed apparent resistivity data,
one predicted apparent resistivity data computed in the last iteration and the corresponding residuals
between both.

5.4 Real case application

5.4.1 Data set description

The proposed iterative geostatistical joint inversion method of FDEM and ERT data was
applied to a real data set obtained in the nature reserve of Doelpolder Noord, situated north of
Antwerp harbour, on the left bank of the Scheldt River (Verhegge et al., 2016a). The site is
characterized by topsoils that range from heavy clay to clay with moderately bad to bad
drainage, covering Pleistocene sands with the top between 4- and 9-meter depth. Manual
coring and geophysical data identified a river dune buried between 2 and 6 m deep, flanking a

large depression with the base reaching up to 9 m below the surface. The dune is characterized
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by low values of FDEM response and higher resistance and is less conductive compared to

the surrounding subsurface (Figures 5.11 and 5.15).
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Figure 5.11 Map of the FDEM survey with QP data (ppm) for the HCP coil configuration with 4 m
offset. The black line represents the location of the transect of Figures 5.12 to 5.15. Green points
represent the locations of the available borehole data (blind well in red). Coordinates in Belgian
Lambert'72 coordinate system.

FDEM data was collected on August 2013 using a DUALEM-421S (DUALEM Inc., Milton,
Canada) low-frequency domain EMI sensor, recording both IP and QP response to an induced
field with a frequency of 9 kHz (Verhegge et al., 2016a). The data were registered in HCP coll
configuration with 1, 2 and 4 m separation between coils, and PRP configuration with 1.1, 2.1
and 4.1 m between coils. The survey was carried out using a quad-pulled sled, with the sensor
elevated 16 cm from the surface, along parallel lines every 3 m, and the responses registered
at 8 Hz while driving 7-8 km/h. The pre-processing of the FDEM data included: i) the correction
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for the spatial offsets between the position and sensor data, following the procedure described
in Delefortrie et al. (2016); ii) the correction for signal drift — a relative calibration, following the
procedure in Delefortrie et al. (2014b); and iii) an absolute calibration per coil configuration to
eliminate the presence of signal offsets, comparing the forward modelled responses at
locations where in-situ measurements of EC and MS were available with the measured FDEM

responses.

Electrical resistivity data were collected using an AGI Supersting R8 with an inverse
Schlumberger configuration, allowing the use of multi-channel possibilities and increasing the
survey speed (Verhegge et al., 2016b). The electrodes were positioned 2 m apart to obtain an
estimated 1 m spatial resolution (Baines et al., 2018). The ERT data were despiked and
concatenated using RES2Dinv software (Loke, 2018). No topographical correction was

needed because the relatively flat topography.

A series of conductivity cone penetration tests (CPT-C), i.e., direct measurements of electrical
conductivity, were carried out using a dielectric cone, a frequency-domain method at 20MHz

(Hilhorst, 1998), reaching the 10-meter depth each one.

To test the iterative geostatistical joint inversion method, a 260 meter transect was selected
containing maximal subsoil variability including the top of a Pleistocene micro-sand ridge
(buried about 2 m deep), FDEM data, a 2D ERT data profile and 4 CPT-C (Figure 5.11).
Although the iterative geostatistical joint inversion can predict EC and MS inversion models in
the same inversion application, and since MS was not measured by direct measurements of
borehole data, the inverse modelling of MS and the prediction of IP component will not be

assessed in the application of the iterative joint inversion method to this real case data set.

5.4.2 Results

To assess the performance of the proposed iterative geostatistical joint inversion method of
FDEM and ERT data, Figures 5.12 show the pointwise mean and variance models of the
ensemble of EC models predicted at the first and the last iterations. The pointwise variance of
EC models demonstrates the influence of including the sensitivity of the forward model to the
model parameters, increasing in depth as the sensitivity of the FDEM decreases, and the
constraint of the ERT data and survey configuration in the predicted EC models, decreasing
the variance of the ensemble, in line with the results achieved in the synthetic case application.
With the FDEM coil configurations used, the constraint of the FDEM data in the inversion
results is limited to approximately 5 meters depth in the predicted EC models. Two distinct
regions can be clearly observed, a shallower one with lower electrical conductivity values and

a deeper one more conductive.
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Figure 5.12 a) Pointwise mean of all the EC models computed in the first iteration; b) pointwise mean
of all the EC models computed in the last iteration; c) pointwise variance of all the EC models
computed in the first iteration; d) Pointwise variance of all the EC models computed in the first
iteration. Vertical magenta lines indicate the location of the borehole data. The vertical red dashed
line represents the location of the blind well.

The performance of the proposed methodology can also be assessed by the match between
observed and predicted FDEM data (Figures 5.13 and 5.14).
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Figure 5.13 Comparison between observed (red line) and predicted QP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC models
generated at a given iteration (dashed dark blue line) for horizontal coil configurations (HCP
orientation with 1, 2 and 4 m offset). The light blue lines represent the minimum and maximum FDEM
values predicted at a given iteration. In the left column the predictions at the end of the first iteration
are represented and in the right column the predictions at the end of the last iteration are represented.
Vertical grey lines indicate the location of the borehole data. The vertical dashed line represents the

location of the blind well.
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The predicted FDEM responses were calculated from the ensemble of all models generated
during the first and last iterations, for all coil configurations. The increasing convergence from
iteration-to-iteration is illustrated by the envelope of the synthetic FDEM responses that gets
narrower and closer to the observed data as the iterative procedure moves froward. In general,
the predicted QP signal component of the FDEM data for all coil configurations match the

recorded field data.
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Figure 5.14 Comparison between observed (red line) and predicted QP data for all models generated
at a given iteration (grey), the predicted FDEM data from the pointwise mean of the EC models
generated at a given iteration (dashed dark blue line) for horizontal coil configurations (PRP
orientation with 1.1, 2.1 and 4.1 m offset). The light blue lines represent the minimum and maximum
FDEM values predicted at a given iteration. In the left column the predictions at the end of the first
iteration are represented and in the right column the predictions at the end of the last iteration are
represented. Vertical grey lines indicate the location of the borehole data. The vertical dashed line
represents the location of the blind well.

The misfit between observed and predicted ERT data can be assessed in Figures 5.15. The
match between predicted and observed apparent resistivity increases from iteration to iteration
and present similar large-scale spatial patterns, reproducing the high and low values (Figures
5.15ato 5.15c¢). The spatial reproduction of the Late Glacial (river) dune, characterized by high

values of apparent resistivity, is also detected in the predicted apparent resistivity.
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Figure 5.15 Comparison between observed and predicted apparent resistivity data; a) Observed
apparent resistivity data; b) Predicted apparent resistivity data computed in the first iteration; c)
Predicted apparent resistivity data computed in the last iteration; d) Biplot between the observed
apparent resistivity and the predicted apparent resistivity data computed in the first iteration; e) Biplot
between the observed apparent resistivity and the predicted apparent resistivity data computed in
the last iteration. Vertical grey lines indicate the location of the borehole data. The vertical dashed

lines represent the location of the blind well.

The quality of the inversion results and the convergence of the data in both domains can be
assessed by computing same correlation metrics (e.g., the global Pearson correlation
coefficient (CC)) between the observed ERT data and the predicted ERT data computed from
each realization, and the root-mean-square errors (RMSE) between the observed FDEM data
and the predicted QP component from each realization (Figure 5.16). In both data domains,
the convergence to the observed data is achieved, with CC of 0.90 in ERT data in the last

iteration, and lower RMSE values of FDEM data from iteration to iteration.
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Figure 5.16 a) Global correlation coefficient of the apparent resistivity data computed in all iterations;
b) Global root-mean-square error of the QP data computed in all iterations.
5.5 Discussion

The proposed iterative geostatistical joint inversion method predicts near-surface EC and MS
models from survey FDEM and ERT data. The inversion method is based on geostatistical
simulation and co-simulation as model perturbation and stochastic update techniques.
Therefore, the predicted models can be conditioned locally to existing borehole data and a
spatial continuity pattern as described by a variogram model. The perturbation of the model
parameters at each iteration leverages the sensitivity analysis provided by the FDEM forward
model (i.e., the assimilation of the recorded FDEM data accounts for the sensitivity in depth
per property as provided by the forward model) and the local predicted by the ERT data at the
deeper depths.

The proposed joint inversion method is based on a 1D FDEM forward model and a 2D ERT
forward model. Using a one- and two-dimensional forward models represents a limitation when
computing the electromagnetic and direct-current resistivity response, particularly in highly
complex geological settings, as the propagation of the electromagnetic field and the injected
electrical current into the subsurface flows three-dimensionally through preferential paths that
could bypass some structures, imposing artifacts in a two-dimensional representation. In these
cases, alternative three-dimensional forward models could be used, but the computational
costs of the proposed methodology would increase. This hard assumption is somehow
alleviated in the proposed methodology as the model perturbation is global for the entire grid

at once (i.e., in 2D or 3D depending on the data availability).

The synthetic application example illustrates the potential of the proposed joint inversion

method to predict a reliable near-surface EC model. However, this is a relatively simple
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example as the same forward model used to create the observed data was used in the
inversion workflow. The potential of the joint inversion method compared to simple geophysical
inversion methods can be assess by testing the GEMI method (Chapter 2) in the same
synthetic data set used with the joint inversion method, using the same inversion and modeling
parameterization along with the same FDEM data. The EC realizations predicted from the
GEMI method capture the spatial continuity of the true EC model (Figure 5.2) and reproduce
the high and low local values of EC (Figure 5.17b). However, from the pointwise variance of
the EC ensemble in the first and last iteration, a higher spatial uncertainty and small-scale
variability of EC is predicted below the 2 m depth (Figure 5.17d), in comparison to the EC
predicted models from the joint inversion method (Figure 5.3d). The increase in the spatial
uncertainty in depth from the EC predicted models computed by the GEMI method is directly
related to the sensitivity decrease of FDEM data in depth along with the lack of ERT data to
converge the results to the true solution.
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Figure 5.17 a) Pointwise mean of all the EC models computed in the first iteration using GEMI; b)
pointwise mean of all the EC models computed in the last iteration using GEMI; c) pointwise variance
of all the EC models computed in the first iteration using GEMI; d) Pointwise variance of all the EC
models computed in the first iteration using GEMI. Vertical magenta lines indicate the location of the

borehole data. Vertical dot and blue lines indicate the location of the borehole data.

The same conclusions arise from computing the residuals between the pointwise mean model
computed in the last iteration and the reference model of EC (Figure 5.18). The GEMI method
predicted EC models with more spatial uncertainty and difference to the true solution. The
residuals from the pointwise mean computed from the EC ensemble models predicted from
the joint inversion method are also lower than the ones predicted by the GEMI method (Figures
5.18c and 5.18d).
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Figure 5.18 Two-dimensional difference between the pointwise mean model computed in the last
iteration and the reference model of EC (Figure 5.2), using: a) iterative joint geostatistical inversion
method; b) GEMI method. c) Histograms of the true electrical conductivity, the pointwise mean of all
the EC models computed in the last iteration and the corresponding residuals between both, using
the iterative joint geostatistical inversion method; d) Histograms of the true electrical conductivity, the
pointwise mean of all the EC models computed in the last iteration and the corresponding residuals
between both, using GEMI method.

The potential of the joint inversion method can also be assessed by applying the GEMI method
in the same real data set of Doelpolder Noord, using the same inversion and modeling
parameterization, and removing the same borehole information in the iterative modelling. The
predicted EC models from this GEMI application are conditioned to the spatial continuity
pattern imposed by a variogram model, but the perturbation of the model parameters is
dependent on the sensitivity analysis of the FDEM data, which decreases significantly below
the 5 m depth. This effect can be observed by computing the pointwise mean and variance of
the EC models predicted by the GEMI method (Figure 5.19). The spatial uncertainty only
decreases in the shallower grid locations of the EC models in the last iteration, here the FDEM

data perturb the model parameters (Figure 5.19d).

By testing both inversion methods in the real case data set without using one of the boreholes
information, we evaluate the predicted EC model locally at the location of the blind well (Figures
5.11 and 5.20). Despite the borehole information does not reaches the full depth of the
inversion model, the predicted near-surface properties from the joint inversion method do

match the observed one at the last iteration.
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Figure 5.19 Inversion realizations of Doelpolder data set obtained by GEMI method: a) Pointwise
mean of all the EC models computed in the first iteration; b) pointwise mean of all the EC models
computed in the last iteration; c) pointwise variance of all the EC models computed in the first
iteration; d) Pointwise variance of all the EC models computed in the first iteration. Vertical magenta
lines indicate the location of the borehole data. The vertical red dashed line represents the location
of the blind well.
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Figure 5.20 True and predicted values of EC along the blind well test for: a) EC during the first

iteration obtained by the iterative joint geostatistical inversion method; b) EC during the last iteration
by the iterative joint geostatistical inversion method; c) EC during the last iteration by the GEMI

method.
A comparison between the predicted EC results in the blind well location computed by both
inversion methods, demonstrated that the iterative geostatistical joint inversion method can

predict the EC model decreasing the uncertainty at depth, at opposite to the GEMI method
below the 5 m depth (Figure 5.20b and 5.20c). The predicted EC values from the joint inversion
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method exhibit a linear correlation to the true EC values from the borehole data that was not

used in the inversion procedure (Figure 5.21).
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Figure 5.21 Biplot along the blind well test between the observed EC and: a) the predicted EC
obtained by GEMI method for the first iteration; b) the predicted EC obtained by GEMI method for the
last iteration; c) the predicted EC obtained by the iterative geostatistical joint inversion method for the
first iteration; d) the predicted EC obtained by the iterative geostatistical joint inversion method for
the last iteration.

5.6 Conclusion

This Chapter introduces an iterative geostatistical joint inversion method that represents a
contribution to probabilistic joint inversion of DC resistivity data and FDEM data. The proposed
iterative joint inversion method can predict the spatial distribution of EC and MS simultaneously
(although the models of MS are only conditioned to the FDEM data).

The predicted FDEM and ERT data computed from each EC realization of the joint inversion
match better the observed data of each geophysical method and reproduces better the true

electrical conductivities, than the models obtain from the FDEM inversion.

The joint inversion methodology was first validated using a developed synthetic data set
rendering realistic spatial distributions of EC and MS and then applied to a real data set
containing FDEM data, ERT data and CPT-C (direct measurements of EC). The pointwise
mean and variance models of predicted EC from both application examples demonstrated that,

not only the joint inversion methodology reproduces exactly the histograms retrieved from the
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borehole data, but also presented improvements in the spatial continuity reproduction and

uncertainty at depth, when compared to the separated FDEM inversion method.
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Chapter 6

6.1 Conclusions

The main goal of this thesis was to develop and implement an iterative geostatistical
geophysical inversion framework able to predict the subsurface spatial distribution of electrical
conductivity and magnetic susceptibility at high spatial resolution from FDEM and ERT data.
All the methodologies proposed herein were validated in a realistic synthetic data set and
applied in real case examples. As main conclusion from these application examples, we can
highlight that the geostatistical framework can handle the different spatial resolution from the
geophysical and borehole data, that the proposed methodologies could cope with
heterogenous subsurface environments, predicting local small-scale variability, while
assessing simultaneously the uncertainty of the predicted models. The main conclusions of
the four objectives of the thesis follow below.

Objective one: Realistic synthetic data set. We developed a realistic synthetic data set
based on direct and laboratory measurements obtained from samples acquired in a mine
tailing. These data can be used to benchmarking different geophysical inversion methods that
have the potential to be applied in complex and heterogeneous near-surface environments.
The work proposed in Bobe et al. (2019) (Chapter 3) is an illustrative example. This data set
proved to be useful to test the sensibility of the proposed inversion methods to discontinuities
in the physical properties and to capture their spatial continuity in highly heterogeneous
environments. It also was useful to validate the proposed inversion methodologies throughout
this thesis and to compare the corresponding predicted models. The data set is publicly
available in http://doi.org/10.5281/zen0do.5116420

Objective two: Iterative geostatistical inversion of FDEM data. We developed and
implemented an iterative geostatistical FDEM inversion methodology (Chapter 2) that allows
to simultaneously predict EC and MS and can be applied to characterize complex and
heterogeneous near-surface deposits of different types and nature. The proposed method was
validated in the 3D synthetic data set developed under objective one, was tested in a real data
set containing several archaeological features and strong local IP anomalies and was
compared to a probabilistic KEG method and their predicted results. The results show the
ability of the proposed method to reproduce the true EC and MS and the predicted FDEM
measurements responses well enclosed the true FDEM. The uncertainty of the posterior
distributions of EC and MS and the FDEM responses computed from the predicted models can
also be assessed, presenting an advantage compared to deterministic FDEM inversion

methods.
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Conclusions

Objective three: Optimization of FDEM inversion. To improve the computational cost of the
developed iterative geostatistical FDEM inversion method, we proposed a FDEM inversion
method that performs the inversion in a reduced space without compromising the exploration
of the model parameter space. We use a FDEM inversion scheme that combines ES-MDA
with RTD and was able to predict the spatial distribution of EC and MS, in both synthetic and
real case application examples. In both application examples, the predicted models
reproduced the measured EC and MS data while allowing to assess the uncertainty of the
predictions. The proposed methodology has the potential to solve large-scale three-
dimensional problems in near-surface applications. The code of this method is available at:
https://github.com/theanswer003/ES-RTD-FDEM

Objective four: Iterative geostatistical joint inversion of FDEM and ERT data. We
developed and implemented an iterative geostatistical joint inversion method that couples data
from different geophysical methods. The proposed method combines the benefits of the
separate inversion methods of small-loop FDEM and direct current resistivity data in a joint
inversion framework. Using a joint inversion approach, the perturbation of the joint parameter
space represents improvements over the joint interpretation of the separate inversion. Though,
most of the joint inversion methods that combine these two geophysical data use deterministic
frameworks which require to explicitly weight the influence of the different data types. This
work represents a milestone in the probabilistic joint inversion of FDEM and ERT data, as the
proposed joint inversion method is, as far as our knowledge go, the first geostatistical joint
inversion method of FDEM and ERT data, with the flexibility of application in a significant range
of near-surface activities. From the application examples shown herein, we concluded that the
proposed joint inversion method presents benefits over the separate inversion methods,
increasing the accuracy of the predicted EC subsurface models with a better reproduction of

the true EC models while reducing the uncertainty at the local small-scale, particularly at depth.

6.2 Future Perspectives

The iterative geostatistical geophysical inversion methods proposed in this thesis could predict
three-dimensional models of electrical conductivity and magnetic susceptibility using a one-
dimensional formulation of the FDEM physical forward equations and capturing the spatial
structure by imposing auxiliary data-based variogram models with vertical and lateral spatial
correlations. The one-dimensionality of the forward model represents one of the main
limitations of the proposed methodologies. This could be overcome with numerical solutions
to 3D forward modelling algorithms, which recently became available in open-source code

repositories (e.g., Heagy et al., 2017; Werthmdiller et al., 2019). Using 3D forward models may
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allow the GEMI and the joint inversion methods to go beyond in the modelling of complex and
heterogeneous subsurface environments. However, since the increase in the subsurface
structure complexity would result in the use of millions of model parameters, this would
increase the computational burden of the inversion procedure to a point that could become
unfeasible. Also, resolving the inverse problem of complex subsurface structures using FDEM
data could imply collecting large data sets of FDEM surveys. Following that demand, FDEM
instrumentation and data collection has undergone recent advances, with the acquisition of
large data sets sampled at a high resolution with the use of drones, with particular interest for
advanced 3D inversion of that data. A line of future research could be the integration of 3D
forward models in geostatistical FDEM inversion methods and the management of these large
FDEM data sets using machine learning and deep learning algorithms, following the steps of
FDEM inversion proposed in Chapter 4.

A complementary line of research would be to push the boundaries of joint inversion methods
applied to near-surface heterogeneous environments, integrating more geophysical methods
that would complementary improve the predicted subsurface physical models. Seismic
methods have the potential to characterize the interfaces between some subsurface structures
that, combined with FDEM and direct current resistivity methods, could retrieve more reliable
numerical models of subsurface physical properties, while simultaneously assessing the
uncertainty of each data domain. Following this line of research, geophysical data could be
integrated with remote sensing images to create 3D models in areas where only 2D transects
of geophysical data are available. This type of spatial data is increasingly abundant, available
across large areas and easy to access, and can be a great addition to geophysical data,

particularly FDEM data, contributing to better understanding the subsurface.

Adding another dimensionality to the subsurface characterization is also a way to go.
Geophysical time-lapse studies, with repeated geophysical measurements, such as FDEM
surveys, along the time in the same study area can be used for advanced monitoring and
characterization of the subsurface. These could be particularly useful in near-surface
applications of environmental and groundwater contamination, characterizing through time-
lapse FDEM measurements the evolution of the subsurface contamination. The new FDEM
data in each period could be used in the co-simulation of updated EC and MS predicted

models.
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